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Abstract  

 

Geopolymer concrete (GPC) has emerged as a sustainable alternative to conventional concrete, offering 

reduced carbon emissions and enhanced mechanical properties. However, variability in compressive strength 

due to material composition poses challenges to its broader adoption. Traditional evaluation methods are 

often time-consuming and resource-intensive, necessitating the development of precise and efficient predictive 

tools. This study introduces the optimized least squares moment balanced machine with feature selection 

(OLSMBM-FS), an advanced AI-based model for accurately predicting GPC compressive strength. The model 

incorporates backpropagation neural networks (BPNN) for weight assignment, least squares support vector 

machines (LSSVM) for hyperplane optimization, and the optical microscope algorithm (OMA) for 

hyperparameter tuning. The study employs a systematic dataset, implementing normalization and feature 

selection techniques to improve the accuracy and efficiency of the model training process. The OLSMBM-FS 

was validated using 10-fold cross-validation and demonstrated superior performance compared to other 

machine learning models. It achieved the lowest RMSE (4.279), MAE (2.291), and MAPE (6.59%), alongside 

the highest R (0.901) and R² (0.813), confirming its robustness and predictive accuracy. These findings 

highlight the potential of OLSMBM-FS as a reliable tool for predicting GPC compressive strength, supporting 

its broader application in sustainable construction practices.  

 

Keywords: Geopolymer strength, machine learning, feature selection, compressive strength, sustainable 

construction 

 

Abstrak  

 

Beton geopolimer (GPC) telah muncul sebagai alternatif berkelanjutan untuk beton konvensional, 

menawarkan pengurangan emisi karbon dan peningkatan sifat mekanis. Namun, variabilitas kekuatan tekan 

akibat komposisi material menjadi tantangan dalam penerapan yang lebih luas. Metode evaluasi tradisional 

sering kali memakan waktu dan sumber daya, sehingga diperlukan pengembangan alat prediksi yang presisi 

dan efisien. Studi ini memperkenalkan optimized least squares moment balanced machine with feature selection 

(OLSMBM-FS), sebuah model berbasis AI yang canggih untuk memprediksi kekuatan tekan GPC secara 

akurat. Model ini mengintegrasikan Backpropagation Neural Networks (BPNN) untuk penentuan bobot, least 

squares support vector machines (LSSVM) untuk optimasi hiperplane, dan optical microscope algorithm 

(OMA) untuk penyesuaian hiperparameter. Penelitian ini menggunakan dataset sistematis, menerapkan teknik 

normalisasi dan seleksi fitur untuk meningkatkan akurasi dan efisiensi proses pelatihan model. Validasi 

OLSMBM-FS dilakukan menggunakan 10-fold cross-validation dan menunjukkan kinerja yang unggul 

dibandingkan dengan model pembelajaran mesin lainnya. Model ini mencapai RMSE terendah (4.279), MAE 

(2.291), dan MAPE (6.59%), serta nilai R tertinggi (0.901) dan R² (0.813), yang mengonfirmasi kekuatan dan 

akurasi prediksinya. Temuan ini menyoroti potensi OLSMBM-FS sebagai alat yang andal untuk memprediksi 

kekuatan tekan GPC, mendukung penerapannya dalam praktik konstruksi berkelanjutan.  

 

Kata kunci: Kekuatan geopolimer, pembelajaran mesin, pemilihan fitur, kekuatan tekan, konstruksi 

berkelanjutan 
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Introduction 
 

Geopolymer concrete (GPC) has gained recognition 

as a viable substitute for conventional concrete due 

to its potential to enhance sustainability and 

significantly reduce carbon emissions. Unlike 

traditional concrete that relies on Portland cement, 

GPC is produced using aluminosilicate-rich 

materials such as fly ash, metakaolin, or slag. These 

materials are combined with alkaline activators to 

form a strong and durable binder matrix (Tchadjie 

and Ekolu, 2018). This material surpasses the 

mechanical properties and durability of ordinary 

Portland cement concrete, while significantly 

lowering the carbon footprint associated with 

cement production. Additionally, GPC exhibits 

exceptional resistance to high temperatures and 

aggressive chemical environments, along with low 

shrinkage, which minimizes cracking risks and 

enhances long-term structural performance (Wong, 

2022). Despite these advantages, GPC faces 

challenges, particularly the variability in its 

mechanical properties, which is heavily influenced 

by the composition of raw materials. Factors such 

as the type and proportion of aluminosilicate 

precursors, alkali solution concentration, and curing 

conditions significantly affected the compressive 

strength. Conventional evaluation methods are 

time-consuming, costly, and require extensive 

laboratory testing, highlighting the need for 

accurate and efficient predictive methods to 

facilitate broader adoption in sustainable 

construction (Alaneme et al., 2023). 

 

Machine learning (ML) offers an innovative 

approach to predicting the mechanical properties of 

GPC. By leveraging large datasets and identifying 

complex patterns, ML models can provide accurate 

predictions and optimize material performance. 

Recent studies have demonstrated the potential of 

ML techniques in this area. For instance, Le et al. 

(2024) developed an ML model to predict the 

compressive strength of GPC using historical data 

on material composition (Le et al., 2024). Similarly, 

Rathnayaka et al. (2024) emphasized the 

importance of data quality in improving ML 

prediction reliability (Gad et al., 2024), while Ma et 

al. (2022) highlighted the need for a deeper 

understanding of input variables to improve 

practical applications (Ma et al., 2022). Despite the 

application of various ML models in compressive 

strength prediction, significant challenges remain, 

such as the lack of feature selection mechanisms, 

data quality variability, and advanced techniques to 

handle complex relationships within datasets 

(Rathnayaka et al., 2024). Incorporating feature 

selection can significantly improve model accuracy 

by focusing on the most influential variables. 

Furthermore, incomplete or unrepresentative 

datasets reduce prediction reliability, necessitating 

data pre-processing techniques, including 

normalization and feature selection, to ensure 

consistent and representative data for the ML model 

(Wang et al., 2024). 

 

Recent advances in ML methodologies, particularly 

advanced and hybrid models, show significant 

potential to overcome these challenges. 

Predominantly used models include ANN, SVM, 

and Decision Tree (Amin et al., 2022)(Ahmad et al., 

2022)(Ahmad et al., 2021). The least squares 

moment balance machine (LSMBM) model 

emerges as a promising and potent framework for 

addressing the complexities of GPC datasets. The 

LSMBM excels at capturing non-linear and higher-

order relationships within diverse datasets for 

compressive strength prediction, outperforming 

traditional ML models in accuracy and 

generalization (Cheng and Khasani, 2024b). Its 

ability to handle imbalanced data and provide 

precise predictions makes it valuable for optimizing 

mix design and understanding the mechanical 

behavior of GPC.  

 

The objective of this research is to introduced 

optimized least squares moment balanced machine 

with feature selection (OLSMBM-FS) model 

capable of accurately predicting the compressive 

strength of geopolymer concrete. The model is 

trained on a dataset compiled from multiple studies 

that incorporates various material compositions to 

enhance its generalizability. Comprehensive data 

pre-processing, including normalization and feature 

selection, ensures the quality and consistency of the 

dataset. Hyperparameter tuning is performed using 

the optical microscope algorithm (OMA), a 

metaheuristic optimization technique to optimize 

model performance. This research advances the 

field of sustainable construction materials by 

employing ML techniques to enhance predictive 

modeling and material optimization. The 

integration of feature selection and advanced 

optimization methods enhances the reliability of 

predictions and provides valuable insights into 

factors influencing GPC performance. This research 

advances the GPC field and demonstrates the 

broader applicability of ML in optimizing 

sustainable construction practices. 

 

Methodology 
 

Model structure 

 

The OLSMBM-FS incorporates a combination of 

advanced techniques aimed at improving regression 

accuracy. In this model, BPNN is employed to 

generate individualized weights for each data 

instance, indicating their respective significance 
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within the dataset, as described in Eq. (1). The 

initial predictions from the BPNN algorithm are 

used to determine the weight given to each data 

point (Gk) as defined in Eq. (2). Where Yk denotes 

the actual target value and Ŷ𝑘 represents the 

predicted output. This inverse formulation ensures 

that samples with higher prediction errors, 

indicating lower reliability, are assigned smaller 

weights, whereas samples with lower prediction 

errors, reflecting higher reliability, are assigned 

larger weights. These weights are integrated with 

the least squares support vector machines (LSSVM) 

principles to create optimal hyperplane moments. 

The model's objective function aims to minimize 

moment imbalance, thereby ensuring optimal 

conditions for effective regression analysis, as 

demonstrated in Eq. (3). Where, the input and 

output variables are denoted by xk and yk, 

respectively. The weight vector, represented as ѵ, is 

coupled with the regularization parameter 𝜆, which 

controls the trade-off between model complexity 

and generalization ability. The term µ corresponds 

to the moments associated with each data point, 

while εk denotes the error term. The dataset 

comprises a total of m data points. To improve the 

model's predictive performance, the OMA is 

utilized for optimal tuning of the model parameters 

(Cheng and Khasani, 2024c). 

𝐷 = (𝑥1, 𝑦1,𝐺1), (𝑥2, 𝑦2,𝐺2), … , (𝑥𝑘 , 𝑦𝑘 , 𝐺𝑘)} ∈ ℝ𝑛      (1) 

𝐺𝑘 = (
𝑌𝑘−𝑌�̂�

𝑌𝑘
)

−1

                                                             (2) 

Minimize  𝑓(ѵ, 𝜀) =
1

2
||ѵ||2𝜆

1

2
∑ µ𝑚

𝑘=1                           (3) 

      Where:            µ = 𝐺𝑘𝜀𝑘
2 

       Subject to      𝑦𝑘 = ѵ. 𝜑(𝑥𝑘) + 𝑏 + 𝜀𝑘 

OMA is a new metaheuristic algorithm inspired by 

the dual-stage magnification process of compound 

optical microscopes, specifically simulating the 

behavior of objective lens magnification (global 

search) and eyepiece magnification (local search) to 

locate and refine optimal solutions within a given 

search space (Cheng and Sholeh, 2023). OMA 

inspired by the dual-stage magnification process of 

compound optical microscopes. It specifically 

simulates the behavior of objective lens 

magnification (global search) and eyepiece 

magnification (local search) to identify and refine 

optimal solutions within a given search space. In the 

initial stage, known as the objective lens 

magnification phase, OMA conducts a broad global 

search to extensively explore the solution space. 

The position of the candidate solution Mi is updated 

in relation to the current best solution Mbest, as 

demonstrated in Eq (4).  

 

In the subsequent stage, the eyepiece magnification 

phase, OMA fine-tunes the solution locally. A 

neighboring solution Mj is chosen, and the 

magnification space is defined based on the fitness 

comparison between Mi and Mj, as illustrated in Eq 

(5). A new solution is then generated using Eq (6). 

This iterative process of alternating between the two 

magnification phases allows OMA to effectively 

balance exploration and exploitation. This 

optimization process enables the OLSMBM-FS 

model to deliver accurate and reliable predictions, 

demonstrating its robustness and adaptability to 

handle complex datasets. The architecture of the 

LSMBM is shown in Figure 1. 

𝑀inew = 𝑀𝑖 + 𝑚𝑟 × 1.40 × 𝑀best 
(4) 

𝑠𝑝𝑎𝑐𝑒 = {
𝑀𝑗 − 𝑀𝑖   𝑖𝑓  𝑓(𝑀𝑖) ≥ 𝑓(𝑀𝑗)

𝑀𝑖 − 𝑀𝑗   𝑖𝑓  𝑓(𝑀𝑖) < 𝑓(𝑀𝑗)
 

(5) 

𝑀inew = 𝑀𝑖 + 𝑚𝑟 × 0.55 × space 
(6) 

Model Adaption 

 

A systematic framework was developed to 

implement the OLSMBM-FS model for predicting 

the compressive strength of GPC, organized into 

five essential stages. The flowchart in Figure 2 

provides a detailed overview of the key steps 

involved in adapting the OLSMBM-FS model. In 

Step 1, involves constructing a comprehensive 

geopolymer concrete dataset by collecting and 

organizing historical data from various sources. 

 

 

Figure 1. Model architecture 
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Figure 2. Model framework 

 

The dataset used in this study effectively represents 

the correlation between the input variables and the 

compressive strength of GPC, serving as a solid 

foundation for predictive modeling. In Step 2, the 

input and output variables were identified to 

establish the foundation for the predictive modeling 

process. Critical input features, including material 

proportions and activator concentrations, were 

selected based on their known impact on 

compressive strength of GPC. Step 3 involved data 

pre-processing procedures to prepare the dataset for 

effective model development and analysis.  

 

Normalization techniques were applied to the input 

variables to maintain consistency and allow for fair 

comparison across different data sources. Feature 

selection procedures were then implemented to 

isolate and retain the most relevant variables, 

contributing to improved model accuracy and 

computational efficiency. Step 4 involved 

constructing the predictive model using OLSMBM-

FS. The model was trained on the processed dataset 

to effectively learn the relationship between the 

selected input and output variables. Advanced 

optimization techniques were applied to refine the 

model parameters, aiming to improve its overall 

predictive performance. In Step 5, The predictive 

capability of the model was evaluated by analyzing 

its performance using a variety of metrics to assess 

its accuracy and reliability. The evaluation results 

confirmed that the OLSMBM-FS model was 

capable of accurately predicting the compressive 

strength of GPC, highlighting its potential as a 

reliable tool for forecasting material performance. 

 

Data relevant to the compressive strength of GPC 

were collected and organized for analysis. The 

dataset was evaluated to identify the critical features 

and variables that influence the strength of the GPC. 

During the data pre-processing phase, 

normalization was applied. To ensure uniformity 

across variables with different scales and units, all 

numerical features were normalized to a common 

scale, typically within the range of 0 to 1. To 

enhance the robustness and generalization 

capability of the model, a 10-fold cross-validation 

method was utilized. This technique involves 

partitioning the dataset into 10 equal segments. 

During each iteration, the model is trained using 

nine segments of the data and tested on the one 

remaining segment. This procedure is repeated ten 

times, allowing each segment to function as the 

validation set exactly once. The performance 

metrics from all iterations are then averaged to 

provide a comprehensive assessment of the model's 

effectiveness. Figure 3 illustrates the structure and 

workflow of the 10-fold cross-validation method. 

 

 

Figure 3. 10-fold cross-validation 

 

Figure 4. illustrates the framework for the 

OLSMBM-FS model, designed to predict the 

compressive strength of GPC. The process begins 

with acquiring a geopolymer concrete dataset, 

followed by data pre-processing, which includes 

feature selection and normalization. This ensures 

consistency and enhances the quality of input data 

for model training and testing. The dataset is then 

divided into a training set and a testing set using 10-

fold cross-validation strategy to ensure robust 

evaluation and generalization. The training set is 

used to develop the OLSMBM-FS model. The 

BPNN was implemented using default parameter 

settings in MATLAB, including a single hidden 

layer with a number of neurons equal to the number 

of input features, a tansig activation function for the 

hidden layer, a purelin function for the output layer, 

and the Levenberg–Marquardt training algorithm.  

 

 

Figure 4. Model adaptation 

 

The OLSMBM-FS training model undergoes an 

iterative process driven by the OMA algorithm, 

which searches for the optimal combination of 
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parameters (γ and σ). This search involves fitness 

evaluation based on the RMSE, continuing 

iteratively until the maximum termination criteria 

are achieved. RMSE provides a smooth and 

continuous error surface, which is advantageous for 

metaheuristic optimization. Furthermore, RMSE is 

widely used in the machine learning literature and 

benchmark studies (Cheng and Khasani, 2024c). 

Once optimization is complete, the resulting 

OLSMBM-FS parameters are applied to the test 

dataset. The OLSMBM-FS testing model then 

generates prediction results, evaluated using 

performance metrics to confirm the accuracy and  

reliability of the model. This framework highlights 

the integration of advanced machine learning and 

metaheuristic optimization to enhance the 

predictive performance of the model. 

 

Performance evaluation 

 

A comprehensive evaluation was carried out to 

examine the predictive accuracy and overall 

performance of the machine learning models. This 

assessment involved the use of multiple 

performance indicators, including Mean Absolute 

Percentage Error (MAPE), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), the 

coefficient of determination (R²), and the 

correlation coefficient (R). Furthermore, the 

Reference Index (RI) was employed to provide a 

unified performance score by equally weighting the 

contributions of all five individual metrics (Cheng 

and Khasani, 2024a). To compute RI, the values of 

each metric were normalized and the normalized 

scores were averaged to produce a single index. RI 

ranges from 0 to 1, with a value of 1 indicating 

optimal performance across all metrics. This 

comprehensive approach enables an overall 

comparison of the effectiveness of the algorithm by 

capturing both individual and aggregate 

performance. The detailed mathematical 

formulations for each performance metric and RI 

calculation are presented in Table 1. 

 

Results and Discussion 
 

Data collection and pre-processing 

 

The data for this study was compiled by integrating 

datasets from various sources, including 

Chindaprasirt and Chalee (Chindaprasirt and 

Chalee, 2014), Kusbiantoro et al. (Kusbiantoro et 

al., 2012), Diaz-Loya et al. (Diaz-Loya et al., 2011), 

Kupwade and Erez (Kupwade-Patil and Allouche, 

2013), Lavanya and Jegan (Lavanya and Jegan, 

2015), Pane et al. (Pane et al., 2018), Topark-Ngarm 

et al. (Topark-Ngarm et al., 2015), Nuaklong et al. 

(Nuaklong et al., 2018), Embong et al. (Embong et 

al., 2016), Muthadhi and Dhivya (Muthadhi and 

Dhivya, 2017), Phoo-ngernkham et al. (Phoo-

ngernkham et al., 2018), and Mehta and Siddique 

(Mehta and Siddique, 2017). The dataset comprises 

nine input and a single output variable, as illustrated 

in Figure 5. 

 

Figure 5. Factors influencing GPC  
compressive strength 

 

This study employed correlation analysis to identify 

relevant variables for predicting the compressive 

strength of GPC. The correlation matrix in Figure 6 

quantifies the linear relationships between the input 

and target variables. The correlation coefficients (r) 

and p-values were assessed to ensure statistical 

significance, retaining variables that contributed 

significantly to the predictive model. The results of 

the correlation analysis for nine influencing factors 

are presented in Table 2. Of these factors, eight met 

the significance threshold (p < 0.05) and were 

selected as input variables, while one was excluded. 

Factor 4 exhibited the highest positive correlation, 

while factor 2 showed a strong negative correlation, 

both were statistically significant. 

 
Table 1. Performance metrics 

Performance metrics 

MAPE = 
100

𝑛
∑

|𝑦𝑖−𝑓𝑖|

𝑦𝑖

𝑛
𝑖  

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑓𝑖)2𝑛

𝑖  

MAE   = 
1

𝑛
∑ |𝑦𝑖 − 𝑓𝑖|𝑛

𝑖  

R         = 
𝑛 ∑ 𝑦𝑖𝑓𝑖

𝑛
𝑖 −(∑ 𝑦𝑖

𝑛
𝑖 )(∑ 𝑓𝑖

𝑛
𝑖 )

√𝑛(∑ 𝑦𝑖
2𝑛

𝑖 )−(∑ 𝑦𝑖
𝑛
𝑖 )

2
√√𝑛(∑ 𝑓𝑖

2𝑛
𝑖 )−(∑ 𝑓𝑖𝑛

𝑖 )
2

 

R2          =  1 −
∑ (𝑦𝑖−𝑓𝑖)2𝑛

𝑖

∑ (𝑦𝑖−𝑦)2𝑛
𝑖

 

 
Table 2. Results of correlation analysis 

Code Factor Unit Correlation 

F1 Fly Ash kg ◉ 

F2 Coarse Aggregate kg ◉ 

F3 Fine Aggregate kg ◉ 

F4 NaOH kg ◉ 

F5 Na2SiO3 kg ◉ 

F6 Added Water (%)  

F7 SiO2 (%) ◉ 

F8 Na2O M ◉ 

F9 NaOH Molarity Mpa ◉ 

◉ Statistically significant correlation at the 0.05  

(two-tailed analysis) 
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Figure 6. The result of Pearson’s  

correlation method 

 

Factor 6, which failed to meet the significance 

threshold, was excluded. The remaining factors, 

including fly Ash (F1), coarse aggregate (F2), fine 

aggregate (F3), NaOH (F4), Na2SiO3 (F5), SiO2 

(F7), Na2O (F8), and NaOH Molarity (F9), were 

retained as significant predictors of GPC 

compressive strength. The dataset of 700 cases 

presented in Table 3 was used to develop the 

predictive model. Through feature selection, the 

study improved the predictive reliability and 

effectiveness of the developed model in estimating 

the compressive strength of GPC.  

 

The box plot in Figure 7. illustrates the statistical 

distribution of the input factors (F1 to F8) and the 

output factor (Y), representing the strength of the 

GPC. Factors F1, F2, and F3 exhibited the highest 

variability with wide ranges and significant 

deviations, indicating their critical influence on the 

output. F2 showed the largest range, with a mean of 

1033.62 and values ranging from 814.81 to 

1685.00. In contrast, F6, F7, and F8 displayed 

narrow ranges and minimal variability.  

 

Figure 7. Dataset statistical measurement 

 

The output factor reflects substantial variability, 

with a mean of 45.64 and values ranging from 12.00 

to 80.40. Significant differences in the scale and 

variability of input factors indicate the necessity of 

normalization before training the machine learning 

model. Normalization ensures that all input features 

are scaled to a comparable range. This pre-

processing  step is crucial for improving the 

accuracy and stability of the predictive model and 

ensuring equitable treatment of all input features 

during training. 

 

Model testing 

 

The effectiveness of the OLSMBM-FS model in 

predicting target outcomes was systematically 

evaluated by benchmarking it against five 

established ML models: BPNN, SVM, LSSVM, 

evolutionary least squares inference model 

(ELSIM), and Linear Regression (LR). This study 

undertook a comparative analysis to assess the 

accuracy and efficiency of the OLSMBM-FS model 

in predicting the compressive strength of GPC. All 

models were implemented in MATLAB, and their 

performances were assessed using performance 

evaluation metrics to provide a comprehensive 

evaluation of predictive capabilities.  

 

The performance comparison among the six 

machine learning models revealed that OLSMBM-

FS achieved the highest predictive accuracy. It 

recorded the lowest values for RMSE (4.279), MAE 

(2.291), and MAPE (6.59%), indicating minimal 

prediction errors. Additionally, it also achieved the 

highest R (0.901) and R² (0.813) values, reflecting 

a strong correlation between the target variable and 

the highest explained variance. Therefore, 

OLSMBM-FS secures the top rank with the highest 

RI score (1.000), demonstrating its robustness. 

ELSIM ranks second with competitive metrics, 

including an RI of 0.838, followed by LSSVM in 

third place, with an RI of 0.758.  

 

BPNN and SVM demonstrated moderate 

performance, while LR showed the weakest 

predictive capacity. The results highlight the ability 

of OLSMBM-FS to outperform traditional and 

other advanced models in predicting the 

compressive strength of GPC. Its superior metrics 

underscore its effectiveness in handling the 

complexities of geopolymer concrete datasets, 

making it the most reliable model for this 

comparison.  

 

Figure 8 presents a parallel coordinate plot that 

visualizes the comparative performance of the six 

machine learning models across six evaluation 

criteria. These include RMSE, MAE, MAPE, R, and 

R². Additionally, the RI, which represents the 

aggregated performance across all five metrics, is 

also included to provide a comprehensive 

assessment. Each line in the plot represents the 

performance of a specific model. In this evaluation, 

smaller RMSE, MAE, and MAPE values indicate 

better performance, while higher R, R², and RI 

values are desirable. 
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Table 3. Dataset of geopolymer concrete 

No F1 F2 F3 F4 F5 F6 F7 F8 Y 

1 414 1091 588 69 138 32.9 15.3 10 33.80 

2 414 1091 588 69 138 32.9 15.3 15 39.02 

3 414 1091 588 69 138 32.9 15.3 20 46.69 

4 523 1124 459 118 118 28.7 11.7 10 36.50 

5 500 1166 475 113 113 28.7 11.7 10 33.00 

... ... ... ... ... ... ... ... ... ... 

698 550 838 600 95 239 30 12 14 40.20 

699 550 838 600 95 239 30 12 14 39.60 

700 550 838 600 95 239 30 12 14 39.00 

 

The OLSMBM-FS demonstrates superior 

performance across all metrics, achieving the 

lowest RMSE, MAE, and MAPE while attaining the 

highest R, R², and RI values. These results confirm 

the robustness and predictive accuracy of 

OLSMBM-FS in the test dataset. 

 

 

Figure 8. Performance evaluation 
 

In contrast, ELSIM, LSSVM, SVM, LR, and BPNN 

show varying performance levels. Although ELSIM 

performs relatively well in some metrics, it falls 

short compared to OLSMBM-FS. BPNN and LR 

exhibited the weakest performance, with higher 

error values and lower correlation metrics, 

indicating their limitations in capturing complex 

relationships within the dataset. The parallel plot 

effectively visualizes these performance 

differences, highlighting the overall dominance of 

the OLSMBM-FS in terms of predictive accuracy 

and generalization. By excelling across all metrics, 

the OLSMBM-FS proved to be a highly reliable 

model for predicting the compressive strength of 

GPC. 

 

Figure 9 illustrates the effectiveness of OLSMBM-

FS in predicting the compressive strength of GPC 

for both the training and testing datasets. The graph 

on the left depicts the training results, whereas the 

graph on the right represents the testing results. In 

both graphs, the actual compressive strength is 

represented on the x-axis, while the predicted 

compressive strength is depicted on the y-axis. The 

orange diagonal line indicates the ideal scenario 

where the predicted values correspond precisely 

with the actual values. In the training results, most 

of the data points aligned closely with the diagonal 

line, indicating strong predictive accuracy during 

the training phase. This alignment demonstrates the 

ability of the OLSMBM-FS to capture complex 

patterns in the training dataset effectively. 

Similarly, the testing results similarly show high 

predictive accuracy, as evidenced by the clustering 

of data points near the diagonal line. The results 

confirm the robustness and generalizability of the 

model, maintaining strong predictive performance 

across the test dataset. 

 

(a) Training dataset 

 

 

(b) Testing dataset 

Figure 9. Comparison of actual and predicted 

 

Conclusion 
 

This research successfully established the 

optimized least squares moment balanced machine 

with feature selection (OLSMBM-FS), a 
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sophisticated artificial intelligence-based inference 

model designed to accurately predict the 

compressive strength of geopolymer concrete 

(GPC). The model incorporates a combination of 

sophisticated methods. BPNN are employed to 

assign importance-based weights to individual data 

points. LSSVM are utilized to determine the most 

suitable regression hyperplane. To further enhance 

predictive accuracy, the OMA is used to optimize 

the model’s hyperparameters effectively. 

 

The application of OLSMBM-FS leveraged a 

systematically dataset containing key input factors 

that influence the compressive strength of GPC. A 

data pre-processing, including normalization and 

feature selection, ensures the consistency and 

quality of the input data. The performance of the 

model was validated using a 10-fold cross-

validation approach to ensure its generalizability. 

Comparative analysis with other machine learning 

models, such as BPNN, SVM, LSSVM, ELSIM, 

and LR, demonstrated the superior performance of 

OLSMBM-FS. The model demonstrated 

outstanding predictive performance by attaining the 

lowest error values, with RMSE of 4.279, MAE of 

2.291, and MAPE of 6.59%. It also recorded the 

highest R of 0.901 and R² of 0.813. Moreover, the 

model achieved a perfect Reference Index (RI) 

score of 1.000, underscoring its high accuracy and 

superior performance relative to the other evaluated 

models. 

 

The OLSMBM-FS model serves as an effective 

decision-support tool for predicting the 

compressive strength of GPC, helping to minimize 

reliance on expensive and time-intensive laboratory 

testing procedures. By enabling accurate 

predictions, the model supports material 

optimization and efficient resource allocation and 

facilitates the broader adoption of sustainable 

construction materials. While the results confirm 

the robustness and effectiveness of OLSMBM-FS, 

this study has certain limitations. Although the 

comparison was conducted with a limited set of 

machine learning models, future research should 

expand to include additional techniques to further 

validate its performance.  
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