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Abstract  
Anaerobic digestion is a well-known biological treatment process. It uses less energy, consumes fewer 

nutrients, converts organic pollutants into methane gas, and produces a small quantity of biomass. The 

interactions among the various microbes in this complex biological system need to be better understood, 

and as a consequence, mathematical models need to be revised. This review discusses the principles of 

biokinetic models published in the literature on anaerobic fermentation as part of the anaerobic digestion 

process for waste-activated sludge. Biokinetic models for anaerobic fermentation have been developed to 

predict cell growth, substrate consumption, and gas production. This exploration delves into the 

incorporation of the hydrolysis stage, a multi-step process entailing the breakdown of carbohydrates, 

proteins, and lipids within existing biokinetic models. Because there is no single analytical method for 

accurately determining the biokinetics of anaerobic fermentation of waste-activated sludge incorporating 

hydrolysis parameters and inhibition effects are proposed to improve the estimated trends of process 

variables as a function of the design variables. 
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1. Introduction 

Anaerobic digestion is a widely recognized biological wastewater treatment process that has 

become the most commonly used method for sludge stabilization (Wang et al., 2021). It is extensively 

applied to treat various types of wastewater, including manure, domestic, and industrial. This complex 

and multistep process involves a series of parallel reactions, including a) hydrolysis of complex particulate 

organic matter, b) fermentation of amino acids and sugars, c) anaerobic oxidation of long-chain fatty 

acids and alcohols, d) anaerobic oxidation of intermediary products, e) acetate production from carbon 

dioxide and hydrogen, and f) conversion of acetate to methane (Pavlostathis and Giraldo-Gomez, 1991). 

Compared to the aerobic process, anaerobic digestion consumes less energy for aeration, requires fewer 

nutrients, transforms organic contaminants into methane gas, and generates a small amount of biomass 

(Kumar et al., 2022). Overall, the multifaceted nature of anaerobic digestion, its energy efficiency, and its 

ability to convert organic waste into valuable methane gas, make it an environmentally-friendly and cost-

effective solution for wastewater treatment and sludge stabilization in various industries. 

https://ejournal.undip.ac.id/index.php/presipitasi
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Anaerobic fermentation is a biological process that occurs in the absence of oxygen, wherein 

organisms carry out their metabolic activities without using oxygen. Anaerobes can thrive in 

environments with low oxygen levels and have widespread application in critical industrial sectors. 

However, their involvement in mixed microbial culture processes introduces complexity to the study and 

modeling efforts (Christy et al., 2014). Anaerobic microbial communities are known to be unstable, 

exhibiting fluctuations in response to changes in environmental conditions, nutrient availability, and 

organic loading (Feng et al., 2022 & Yu et al., 2021). These fluctuations can complicate understanding 

microbial interactions and dynamics in anaerobic fermentation processes. Due to the intricate nature of 

anaerobic microbial communities and their behaviors, cultivating and manipulating purely anaerobic 

bacteria necessitate specialized knowledge and rigorous methodologies. Researchers and engineers must 

consider the complex interactions and factors influencing the performance of anaerobic fermentation to 

optimize and design efficient processes. In this context, estimating biokinetic information in anaerobic 

fermentation models becomes challenging. Biokinetics is crucial for understanding the growth rates, 

substrate utilization, and metabolic activities of microorganisms in the fermentation process. However, 

enzymes and catabolic pathways involved in fermentation undergo a series of sequential reactions that 

can be biochemical or physicochemical in origin and occur at varying concentrations (Palanichamy and 

Palani, 2014). The interactions among the numerous microorganisms in these complex systems are poorly 

understood, contributing to the lack of comprehensive mathematical models (Feng et al., 2022 & 

Perendeci et al., 2008). 

Biokinetic models play a crucial role in anaerobic fermentation as they are designed to predict 

essential factors, such as cell growth, substrate consumption, and gas generation during the process 

(Kurniawan et al., 2018). The model for methanogenesis is relatively straightforward. However, special 

attention has been dedicated to describing the final step of anaerobic fermentation. This emphasis is 

particularly crucial since some of the biokinetic models for acidogenesis and acetogenesis have undergone 

comprehensive review (Zhen et al., 2017). These models are instrumental in understanding the entire 

anaerobic fermentation process by integrating microbial growth rates with substrate and biomass 

concentrations. One notable example is the Anaerobic Digestion Model No. 1 (ADM1), where biochemical 

and physicochemical processes are broken down into multiple equations of biochemical kinetics and 

mass transfer (Frunzo et al., 2019 Xu et al., 2015). However, the accuracy of data prediction can be 

influenced by using biokinetic coefficients from previous research. To ensure accurate predictions, each 

biokinetic variable requires an independent approach, drawing from existing processing simulation 

results using growth and utilization rate models. By meticulously analyzing and refining the biokinetic 

models, researchers can acquire valuable insights into anaerobic fermentation processes leading to more 

effective process optimization and control in diverse applications, including biogas production, 

wastewater treatment, and sustainable energy generation. 

One of the biokinetic models in anaerobic processes is based on the phases of changing complex 

organic material substances into simple compounds through the processes of hydrolysis, acidogenesis, 

acetogenesis, and methanogenesis (Bareha et al., 2019 & Batstone, 2006). The hydrolysis model remains 

an exclusive, rate-determining step, and relatively simplistic model (Batstone, 2006). Hydrolysis 

biokinetics is more often estimated using first-order biokinetics than microbial growth biokinetics. The 

hydrolysis stage is a multi-step process that includes the breakdown of carbohydrates, proteins, and 

lipids. Hence, there is no single analytical method to accurately derive the microbial growth biokinetics 

as it may also include multiple enzyme production, diffusion, adsorption, reaction, and enzyme 

deactivation steps (Vavilin et al., 2008). While the first-order biokinetics was not directly related to 

microbial growth, a high hydrolysis rate showed some real influence on biomass concentration in 

anaerobic biodegradability experiments using a high inoculum-to-substrate ratio (Bialek, 2012; Vavilin et 

al., 2008). Consequently, first-order biokinetics is not applicable in all circumstances to estimate accurate 

hydrolysis parameters. 
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 The current mathematical models of anaerobic fermentation are discussed in this work. It also 

gives some insight into the development and validation of these mathematical models, which are based 

on the biokinetics of microbial growth in anaerobic fermentation. The model components, which include 

the dynamic active cell biomass concentration and dynamic material balance of microbial growth rate 

expressions, as well as the inclusion of hydrolysis parameters and inhibitory effects, are also discussed in 

more detail. The inhibitory effects are comprised of two of the most prevalent environmental parameters 

impacting anaerobic fermentation, pH and temperature, as well as ammonia, which is a significant 

inhibitory product in anaerobic fermentation. 

 

2. Biokinetics of Microbial Growth 

The concept of biokinetics of microbial growth has been dominated by an empirical model 

initially developed by Monod (Monod, 1949). The Monod equation is widely applied in various fields, 

including wastewater treatment, bioremediation, and bioprocess engineering, to optimize microbial 

growth and substrate utilization. It provides valuable insights into how microorganisms respond to 

changing environmental conditions and helps design efficient biological processes for various 

applications. The Monod equation introduces a concept that limits the substrate of growth (Monod, 1949) 

and is defined as following equation (1): 

 

𝜇 =
𝜇max𝑆h

𝐾S + 𝑆h

 (1) 

 

and is depicted in Figure 1. The parameters μmax and KS play a fundamental role in the cell-substrate 

system of microorganisms. The parameter μmax represents the maximum specific growth rate of 

microorganisms and indicates how fast microorganisms can grow and multiply under optimal conditions  

(Priyadharshini and Bakthavatsalam, 2019). When the substrate concentration is low, microorganisms 

can rapidly increase in number, resulting in a high μmax value. However, as the substrate concentration 

becomes abundant, the growth rate of microorganisms slows down, leading to a lower μmax value 

(Kythreotou et al., 2014 & Maleki et al., 2018). 

 

 
 

Figure 1. The relationship between the specific growth rate and the concentration of growth-limiting 

substrate in cell  

Source: (Monod, 1949). 
 

On the other hand, the parameter KS, also known as the half-saturation constant, plays a crucial 

role as an indicator of the microorganisms' affinity for the substrate. A lower KS value indicates that 

microorganisms have a higher affinity for the substrate and can efficiently utilize and consume it even at 

very low concentrations (Arnaldos et al., 2015 & Maleki et al., 2018). For example, for carbohydrate 

substrates, KS values are typically measured in milligrams per liter (mg L-1), while for other substances 

like amino acids, KS values are measured in grams per liter (g L-1). This means that microorganisms with 
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low KS values need a lower activation energy to thrive on the available substrate (Doran, 2012). In mixed 

media environments, the growth rates of microorganisms are often much larger than the KS values for 

the available substrates. As a result, the microorganisms are not limited by the substrate concentration, 

and the growth rate has no significant influence on the substrate concentration until the substrate 

becomes extremely low (𝑆h becomes extremely low). In such conditions, microorganisms may face 

substrate limitations, and their growth rates may slow down as the substrate becomes scarce (Gharasoo 

et al., 2015). 

To achieve the μmax, microorganisms require a substrate concentration equal to or greater than 

the value of KS. If the substrate concentration is below the KS value, the microorganisms will not be able 

to reach their μmax, regardless of the amount of substrate provided (Harmand et al., 2017; Maleki et al., 

2018; Qasim and Zhu, 2018). Similarly, when microorganisms are grown at concentrations above the KS, 

providing additional substrate will not enhance the μmax further. Therefore, maintaining a substrate 

concentration in the range of the 𝐾S value is essential to support the optimal growth and performance of 

microorganisms in biotechnological applications and biological treatment processes. Understanding the 

KS value is critical for process optimization and control in practical applications (Qasim and Zhu, 2018). 

By maintaining the substrate concentration within the KS range, operators can ensure that 

microorganisms work at their full potential, improving process performance, reducing treatment time, 

and higher resource recovery. This significance is fundamental in anaerobic digestion processes where 

microorganisms are central role in converting organic matter and pollutants into valuable products or 

harmless byproducts. Furthermore, the KS value is influenced by various factors, such as temperature, 

pH, and the presence of inhibitors (Najafpour, 2007 & Rajagopal et al., 2013). Therefore, in designing and 

operating biological processes, it is essential to consider these factors to maintain the substrate 

concentration within the optimal range for microorganisms' growth and activity. Additionally, 

monitoring and controlling the substrate concentration in real time can help ensure the stability and 

efficiency of the biological processes.  

 

3. Comparison Of Different Microbial Growth Biokinetic Models 
The Monod model is a simplified representation of microbial growth kinetics, particularly for 

microorganisms that exhibit a simple substrate uptake pattern (Maier and Pepper, 2015; Monod, 1949). 

However, The Monod model is not appropriate for mixed cultures or complicated substrates, and, in 

some cases, microbial growth may follow a more complex Monod-like response to substrate 

concentration (Kythreotou et al., 2014). Researchers have developed modified growth rate equations 

derived from the Monod model to address this limitation and account for more complex growth behavior 

(Lee et al., 2015 & Mandli and Modak, 2014). These modified equations consider the complexities arising 

from mixed microbial cultures and diverse substrates (Mandli and Modak, 2014). By incorporating 

additional parameters and factors, these modified models can better describe and predict microbial 

growth in various of environments and under different conditions. This adaptability is crucial in various 

biotechnological applications and wastewater treatment processes, where the composition of microbial 

communities and the nature of substrates can vary significantly. By exploring and refining these modified 

growth rate equations, researchers can better understand the factors that influence microbial growth and 

metabolism. This knowledge can then be applied to optimize and control biological processes more 

effectively, leading to enhanced performance, higher yields, and improved sustainability in 

biotechnological applications (Dionisi, 2017). 

Several different methods for predicting biodegradation biokinetics that is proportional to the 

concentration of the growth-limiting substrate are shown in Table 1. These models, including Monod, 

could predict biokinetic parameters for single anaerobic fermentation and anaerobic fermentation 

combined with other unit configurations. Tessier model (Eq. 2) for growth represents a more complicated 

algebraic solution than the Monod rate equation. The growth rate of the Tessier model is susceptible to 

a low substrate concentration (Najafpour, 2007). The Contois model (Eq. 4) is similar to the Monod rate, 
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except it has a Michaelis constant proportional to the biomass concentration (X). The Contois model 

allows for the inclusion of biomass concentration in the growth rate equation, considering the interaction 

between microorganisms and substrate utilization. This can be particularly useful when studying mixed 

microbial cultures or complex biological systems. Ming model (Eq. 5) represents the Moser model when 

the substrate exponential factor is equivalent to a value of 2. Sokol Howell model (Eq. 3) obtains greater 

values of specific growth rate for the same initial substrate concentration for younger inoculum exposed 

to lower substrate concentration. Overall, the development of modified growth rate equations from the 

Monod equation allows for more accurate and comprehensive representations of microbial growth 

kinetics under various conditions, making them valuable tools in bioprocess modeling, optimization, and 

control (Wade, 2020). 

 

Table 1. Microbial growth biokinetic models depending on a substrate concentration  

Source : (Kythreotou et al., 2014 & Najafpour, 2007). 
 

No Biokinetic model Microbial growth rate equation Equation 

1. Tessier 
𝜇 = 𝜇max (1 − 𝑒

−
𝑆h
𝐾S) 

(2) 

2. Sokol-Howell 
𝜇 =

𝜇max𝑆h

𝐾S + 𝑆h
2 

(3) 

3. Contois 
𝜇 =

𝜇max𝑆h

𝐾S𝑋 + 𝑆h

 
(4) 

4. Ming 
𝜇 =

𝜇max𝑆h
2

𝐾S + 𝑆h
2 

(5) 

 

Microorganisms' growth and reproduction can be impeded by high substrate and product 

concentrations (Kythreotou et al., 2014 & Liu, 2012). This inhibition is particularly significant in mixed 

microbial cultures where suppressing substrates and products can have interconnected effects (11). The 

original Monod model, which assumes a simple relationship between microbial growth rate and substrate 

concentration, becomes inadequate when substrates act as barriers to their biodegradation. In such cases, 

incorporating a correction for substrate inhibition becomes necessary to characterize the growth-related 

biokinetics accurately. This correction involves introducing an inhibitory constant, Ki, into the Monod 

derivative (Okpokwasili and Nweke, 2005). By incorporating the inhibitory constant, the modified model 

accounts for the inhibitory effect of high substrate concentrations on microbial growth (Maleki et al., 

2018; Okpokwasili and Nweke, 2005; Xie et al., 2016). The Ki value represents the concentration of 

substrate at which the growth rate is reduced by half, indicating the threshold beyond which substrate 

inhibition becomes significant (Wan et al., 2022). With this modification, the model can better describe 

microbial growth in environments with elevated substrate concentrations, providing a more accurate 

representation of real-world biological processes. 

Product inhibition (P) has comparable repercussions to substrate inhibition. The buildup of end 

products leads to a steady decline in the rate of specific growth and product synthesis (Mulchandani and 

Luong, 1989). The growth model expressions must be expanded to encompass product concentrations 

when inhibitory products compromise cell growth. Table 2 presents various growth biokinetic models 

that consider both substrate and product inhibition, and these models can be utilized to estimate 

biokinetic parameters for anaerobic fermentation. The Hinshelwood model (Eq. 6) is a modified version 

of the Monod model that considers the inhibitory effect of product accumulation on microbial growth. 

This model allows a more accurate representation of microbial growth in the presence of inhibitory 

products, providing insights into how the accumulation of certain products can limit microbial activity. 

The Aiba model (Eq. 7) is another variation of the Monod model that considers the influence of inhibitory 

products on microbial growth (Aiba et al., 1968). In the Aiba model, the concentration of the product is 
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incorporated into the denominator of the equation. The Aiba model allows for a more nuanced 

understanding of how product inhibition affects microbial growth by directly relating the product 

concentration to the growth rate. The Ghose-Tyagi model (Eq. 8) is a comprehensive growth model 

considering substrate and product inhibitions in the Monod rate equation (Ghose and Tyagi, 1979). This 

model accounts for the combined effects of substrate and product concentrations on microbial growth, 

providing a more accurate representation of the complex interactions between microorganisms and their 

environment. The Severly model (Eq. 9) is particularly useful when inhibition arises from high 

concentrations of both substrates and products (Mulchandani and Luong, 1989; Najafpour, 2007). This 

model is an extension of the Monod equation, considering the squared term of substrate concentration 

(S2) in the denominator. It allows for a more detailed examination of how high concentrations of both 

substrates and products can impede microbial growth. 

 

Table 2. Biokinetic models of microbial growth in relation to substrate and product concentrations 

Source: (Aiba et al., 1968; Ghose and Tyagi, 1979; Mulchandani and Luong, 1989; Najafpour, 2007) 
 

No Biokinetic model Microbial growth rate equation Equation 

1. Hinshelwood 
𝜇 = (

𝜇𝑚𝑎𝑥𝑆ℎ

𝐾𝑆 + 𝑆ℎ

) (1 −
𝑃

𝑃𝑚

) 
(6) 

2. Aiba 
𝜇 = (

𝜇𝑚𝑎𝑥𝑆ℎ

𝐾𝑆 + 𝑆ℎ

) 𝑒−𝐾𝑖𝑃 
(7) 

3. Ghose-Tyagi 

𝜇 = (
𝜇𝑚𝑎𝑥𝑆ℎ

𝐾𝑆 + 𝑆ℎ +
𝑆ℎ

2

𝐾𝑖

) (1 −
𝑃

𝑃𝑚

) 

(8) 

4. Severly 
𝜇 = (

𝜇𝑚𝑎𝑥𝑆ℎ

𝐾𝑆 + 𝑆ℎ

) (
𝐾𝑖

𝐾𝑖 + 𝑃
) (1 −

𝑃

𝑃𝑚

) 
(9) 

 

4. Prospective model development on estimating biokinetic parameters for 

anaerobic fermentation of waste activated sludge 
In wastewater modeling, understanding biokinetic parameters is crucial for accurately predicting 

and optimizing microbial growth and substrate utilization. Biokinetic models characterize microbial 

behavior and its response to environmental conditions. Several models have been developed to estimate 

these parameters, considering inhibitory effects and substrate hydrolysis for anaerobic fermentation 

process. Among the baseline models utilized for estimating biokinetic parameters, Monod, Tessier, Sokol-

Howell, Contois, and Ming (Equation 1 – 5) are growth biokinetic models focusing on cell growth rate, 

substrate uptake, and the influence of inhibitory variables like temperature and pH. These models provide 

insights into the relationship between microbial growth and substrate concentration, facilitating process 

optimization and control in various biotechnological applications. On the other hand, Hinshelwood, 

Aiba, Ghose-Tyagi, and Severly models (Equation 6 – 10) offer a more comprehensive approach by 

incorporating additional factors such as cell growth rate, substrate consumption, and inhibitor effects. 

These models consider not only substrate concentration but also the presence of inhibitor compounds 

like ammonia, which can significantly impact microbial activity. Considering both inhibitory and growth-

related factors, these models enable a more accurate depiction of microbial behavior in complex 

bioprocess environments. 

In the complex process of anaerobic fermentation of complex organic compounds, multiple steps 

are significant in determining the overall process rate. One approach to understanding this process is the 

concept of the rate-limiting step. The rate-limiting step refers to the particular stage in the fermentation 

process that becomes the limiting factor for the overall efficiency of the process, mainly under conditions 

of biokinetic stress (Pavlostathis and Giraldo-Gomez, 1991 & Zhen et al., 2015). In continuous culture 

systems, biokinetic stress is induced by steadily reducing the solids retention time until it reaches a 
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critical value, leading to the washout of microorganisms from the system  (Pavlostathis and Gossett, 1986). 

The rate-limiting step can vary depending on factors such as the type of substrate, the specific process 

design, the operating temperature, and the amount of substrate fed into the system (Mao et al., 2015). 

Identifying the rate-limiting step is paramount for optimizing the overall efficiency of anaerobic 

fermentation processes. By understanding which step limits the process rate, researchers and operators 

can focus their efforts on improving that specific aspect to enhance the overall performance of the 

fermentation. Furthermore, the concept of the rate-limiting step is essential for troubleshooting and 

diagnosing potential issues in anaerobic fermentation systems (Batstone et al., 2015; Jimenez et al., 2015; 

Mao et al., 2015). If the process experiences difficulties or failures, identifying the rate-limiting step can 

help pinpoint the specific area that needs attention and modification to prevent future failures. 

The development of the biokinetic model for anaerobic fermentation considers several critical 

points the hydrolysis pathways. The interrelationships and overlapping hydrolysis pathways of the 

complex organic substrates illustrate in Fig. 1. One fundamental aspect is that microorganisms cannot 

directly utilize complex organic as their growth and methane production sources (Wainaina et al., 2019). 

Instead, these complex chemicals must undergo hydrolysis, breaking down into assimilable compounds 

that the microorganisms can readily take up, like carbohydrates, proteins, and lipids (Fig. 1). The 

hydrolyzed assimilable compounds are not rate-limiting in their transport into the microorganisms and 

are readily available for microbial uptake (Bamforth and Cook, 2019 & Wainaina et al., 2019). Another 

important consideration is that a multi-culture complex of macromolecules of 

 
Figure 1. The hydrolysis pathways of EPS, SMP, as well as insoluble and soluble macromolecules 

Source: (Teo, 2016) 
 

extracellular polymeric substances (EPS) carrying out the entire anaerobic fermentation process is then 

solubilized into soluble macromolecules such as soluble microbial products (SMP) (Teo, 2016). This 

molecule complex comprises a diverse community of microorganisms working collectively as a 

consortium. The hydrolyzed assimilable compounds serve as the primary substrate for this multi-culture 

complex, supporting the growth and metabolic activities of the various microbial components (Teo, 2016; 

Yu et al., 2013). The interactions among the microorganisms within this complex are dynamic and 

spontaneous, creating a cohesive and functional unit that efficiently carries out the anaerobic 
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fermentation process. According to the unified theory for EPS and SMP, EPS can be further hydrolyzed 

into biomass associated products (BAP) component (Fig. 1). Due to the intricate nature of the multi-

culture complex and the interactions among its microbial components, the estimation of the biokinetic 

parameters of anaerobic fermentation has become more comprehensive and complex. This complexity 

arises from the various factors influencing microbial behavior, such as substrate availability, microbial 

interactions, and metabolic pathways (Perez-Garcia et al., 2016 & Teo, 2016). As a result, the biokinetic 

model accounts for a broader range of kinetic constants, reflecting the diverse dynamics and processes 

occurring within the anaerobic fermentation system. 

Anaerobic fermentation is described as a three-step process according to the biokinetic model 

by the following explanation:  

4.1. Extracellular Hydrolysis of Complex Compounds into Soluble Assimilable Substrates 

In the first step of anaerobic fermentation, complex organic compounds, such as proteins, lipids, 

and carbohydrates, are broken down through extracellular hydrolysis. This process involves the secretion 

of specific enzymes, known as hydrolases, by hydrolytic microorganisms into the surrounding 

environment. These hydrolases act on the complex compounds, catalyzing their degradation into more 

straightforward soluble and assimilable substrates (Xu et al., 2014). These soluble substrates are typically 

smaller molecules, such as amino acids, sugars, and fatty acids, which the microbial community can 

readily absorb and utilize (Figure 1). A linear trend is used in the hydrolysis process to account for changes 

in concentration over time in the hydrolysable substrate such that following equation (10):  

 

d𝑆h

d𝑡
= 𝐾h(𝑆i − 𝑆h) (10) 

 

The total of the intracellular and extracellular hydrolysis rate coefficients, Kh, in the conceptual 

model for anaerobic digestion assumes there is no diffusional constraint for transferring solubilized 

material out of the damaged cell (Barthakur et al., 1991; Kurniawan et al., 2018; Pavlostathis and Giraldo-

Gomez, 1991). 

 

4.2. Transport of Soluble Assimilable Substrates into Cells 

Before it can be processed by microorganisms, complex organic material must be reduced to a 

solution that can be transferred across cell membranes (Yu et al., 2013). Transport of a hydrolyzed 

substrate into the cell is considered directly to the concentration of the active biomass, 𝑋, and the 

difference in concentrations of the hydrolyzed substrate outside and inside the cells. The intracellular 

concentration of hydrolyzed substrate, 𝑆g, is assumed to be negligible due to the rapid metabolism of the 

hydrolyzed substrate in the cells. The following relationship can be written as following equation (11): 

 

−d𝑆h

d𝑡
= 𝑘(𝑆h − 𝑆g)𝑋 = 𝑘𝑆h𝑋 (11) 

 

Eqs. (10) and (11) can be rearranged to determine the concentration of hydrolyzed substrate (Sh) by 

following the equation (12): 

 

𝑆h =
𝐾h 𝑆i

𝑘𝑋 + 𝐾h

 (12) 

 

The biomass synthesis yield (X) is defined as the ratio of biomass produced to substrate consumed, as 

given in the equation (13) below. 

 

𝑋 = 𝑌(𝑆0−i − 𝑆i) + 𝑋0 (13) 
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4.3. Utilization of assimilable substrates for the cell growth and product formation 

The Monod biokinetic model has been widely used to describe microbial growth in response to 

limited substrate concentrations. These model has been instrumental in understanding the relationship 

between specific growth rates and substrate availability in simple biological systems. However, as 

wastewater treatment processes involve complex and diverse microbial communities, the applicability of 

the traditional Monod model becomes limited due to the presence of multiple substrates and competing 

reactions. To overcome these limitations, researchers have developed unstructured biokinetic models, 

which provide a more versatile and comprehensive approach to predicting microbial behavior in 

wastewater treatment processes (Chezeau and Vial, 2019; Noll and Henkel, 2020). These models consider 

various factors influencing microbial growth and substrate utilization, including the concentrations of 

different substrates, nutrients, pH, temperature, and inhibitory compounds. Unstructured biokinetic 

models incorporate multiple rate-limiting steps, account for the interactions between microorganisms 

and their substrate environment, and offer a more realistic representation of the complex microbial 

interactions in biological wastewater treatment systems (Chezeau and Vial, 2019 & Moser et al., 2021). 

The models are usually expressed as differential equations that describe the changes in microbial biomass 

and substrate concentrations over time. These unstructured growth rate models are dependent on the 

following: 

• the concentration of the substrate (Monod, Tessier, Ming, Sokol-Howell),  

• the concentration of the cell and/or the substrate (Contois), and  

• the concentration of the substrate and product inhibition (Aiba, Hinshelwood, Ghose-Tyagi, Severly)  

The model equations have been interpreted empirically to demonstrate their relevance in modeling 

anaerobic fermentation biokinetics. 

The pH value significantly affects the degradation process during anaerobic fermentation. It 

directly impacts the microbial community composition and metabolic activities within the anaerobic 

fermentation reactor. The presence of specific compounds like ammonia, sulfate, and volatile fatty acids 

(VFAs) can lead to acidity or alkalinity in the system, creating distinct pH conditions that favor the growth 

of different microbial species (Kythreotou et al., 2014). The pH inhibition factor (I) is a key parameter 

used to quantify the impact of pH on microbial activity in the system. This factor is essential for 

understanding how pH affects the performance and stability of the fermentation process. The pH 

inhibition factor is mathematically expressed as a function that relates the pH level to the microbial 

growth rate or metabolic rate. The pH inhibition factor (𝐼) is stated as following equation (14) (Batstone 

et al., 2015): 

 

𝐼 =
1 + 2 ∙ 100.5(𝑝𝐻min−𝑝𝐻max)

1 + 10(𝑝𝐻−𝑝𝐻max) + 10(𝑝𝐻min−𝑝𝐻)
 (14) 

 

Where 𝑝𝐻min and 𝑝𝐻max are two parameters that indicate pH values at which microbial activity is still 

present. The 𝑝𝐻min and 𝑝𝐻max were 6,5 and 8, respectively, since the pH optimum for most bacteria 

ranges from pH 3 to 8 (Liu, 2012). 

Temperature is a critical element for microbial growth in anaerobic fermentation. The 

temperature affects microbial activities by altering the nutritional needs, the type of metabolism, the 

biomass content, and the reaction rate (Delgadillo-Mirquez et al., 2016). Traditionally, the Arrhenius 

equation has been used to describe the temperature dependency of biological processes. However, in 

some instances where the Arrhenius equation is unsuitable or applicable to specific parameters, the 

cardinal temperature model (CTM) is a more appropriate alternative for representing the temperature 

effect on the anaerobic process (Kythreotou et al., 2014 & Rosso et al., 1993). The CTM considers the 

experimentally observed inflection point in the suboptimal temperature range. This inflection point is 

significant as it represents a transition from suboptimal to optimal temperature conditions for microbial 

growth. The CTM considers this non-linear behavior, providing a more accurate depiction of microbial 
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response to temperature variations during anaerobic fermentation (Rosso et al., 1993). The CTM 

temperature factor (𝜃) is stated as following equation (15): 

 

𝜃 =
(𝑇 − 𝑇max)(𝑇 − 𝑇min)2

(𝑇opt − 𝑇min)[(𝑇opt − 𝑇min)(𝑇 − 𝑇opt) − (𝑇opt − 𝑇max)(𝑇opt + 𝑇min − 2𝑇)]
 (15) 

 

Where 𝑇 is the operation temperature, 𝑇min and 𝑇max are the lower and upper temperatures when the 

growth rate does not occur, respectively, and 𝑇opt is the temperature at which the maximum specific 

growth rate equals its optimal value. By using Eqs. (12), (13), (14), and (15), Eqs. (1-9) can be arranged into 

Eqs. (16-24) to form the biokinetic models on the hydrolyzed substrate in anaerobic fermentation based 

on microbial growth rate (Table 3). In these biokinetic models, effluent substrate concentration, 𝑆i, is a 

function (dependent) of influent substrate concentration,  𝑆i−0.  
 

Table 3. Microbial growth biokinetic models on the hydrolyzed substrate in anaerobic fermentation 
 

Biokinetic 

model (Eq. 

no.) 

Microbial growth rate on the hydrolyzed substrate 

Monod 

(Eq. 16) 
𝜇max

𝜇
= [

𝐾S[𝑘𝑌(𝑆0−i − 𝑆𝑖) + 𝑘𝑋0 + 𝐾h]

𝐾h𝑆i

+ 1] [
1

𝑓
] 

  

Tessier 

(Eq. 17) 
ln [1 −

𝜇

𝜇max(𝑓)
] = − [

𝐾h𝑆i

𝑘𝐾S[𝑌(𝑆0−i − 𝑆i) + 𝑋0] + 𝐾h𝐾S

] 

  

Sokol-Howell 

(Eq. 18) 

𝜇max

𝜇
= [

𝐾S[𝑘𝑌(𝑆0−i − 𝑆i) + 𝑘𝑋0 + 𝐾h]

𝐾h𝑆i

+
𝐾h𝑆i

𝑘𝑌(𝑆0−i − 𝑆i) + 𝑘𝑋0 + 𝐾h

] [
1

𝑓
] 

  

Contois 

(Eq. 19) 

𝜇max

𝜇
= [

(𝐾S𝑌(𝑆0−i − 𝑆i) + 𝐾S𝑋0)(𝑘𝑌(𝑆0−i − 𝑆i) + 𝑘𝑋0 + 𝐾h)

𝐾h𝑆i

+ 1] [
1

𝑓
] 

  

Ming 

(Eq. 20) 

𝜇max

𝜇
= [

𝐾S[𝑘𝑌(𝑆0−i − 𝑆i) + 𝑘𝑋0 + 𝐾h]2

(𝐾h𝑆i)
2

+ 1] [
1

𝑓
] 

  

Aiba 

(Eq. 21) 

𝜇max

𝜇
= [

𝐾S[𝑘𝑌(𝑆0−i − 𝑆i) + 𝑘𝑋0 + 𝐾h]

𝐾h𝑆
+ 1] [

1

𝑒−𝑘1𝑃
] [

1

𝑓
] 

  

Hinshelwood 

(Eq. 22) 

𝜇max

𝜇
= [

𝐾S[𝑘𝑌(𝑆0−i − 𝑆i) + 𝑘𝑋0 + 𝐾h]

𝐾h𝑆i

+ 1] [
−𝑃𝑚

𝑃 − 𝑃𝑚

] [
1

𝑓
] 

  

Ghose-Tyagi 

(Eq. 23) 

𝜇max

𝜇
= [

𝐾S[𝑘𝑌(𝑆0−i − 𝑆i) + 𝑘𝑋0 + 𝐾h]

𝐾h𝑆i

+ 1 +
𝐾h𝑆i

𝐾i[𝑘𝑌(𝑆0−i − 𝑆i) + 𝑘𝑋0 + 𝐾h]
] [

−𝑃m

𝑃 − 𝑃m

] [
1

𝑓
] 

  

Severly 

(Eq. 24) 

 

𝜇max

𝜇
= [

𝐾S[𝑘𝑌(𝑆0−i − 𝑆i) + 𝑘𝑋0 + 𝐾h]

𝐾h𝑆i

+ 1] [
𝐾i + 𝑃

𝐾i

] [
−𝑃m

𝑃 − 𝑃m

] [
1

𝑓
] 

Note: f is the inhibition factor as follows: the influence of pH (f = I), the influence of temperature (f = θ), the influence 

of pH-ammonia (f = I), the influence of pH-temperature (f = Iθ), the influence of temperature-ammonia (f = θ), the 
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influence pH-temperature-ammonia (f = Iθ), the influence of ammonia and no influence of pH-temperature-

ammonia (non-f or f is negligible). See Table 2 for selected influence effects. 

 

Monod's and other biokinetic models' mathematical expressions (Table 1 and Table 2) could be 

changed to include the influence of pH, temperature, and ammonia, resulting in models with 

combinations of inhibitor factor and product inhibition. Additionally, biokinetic models could be 

designed without considering the influence of pH, temperature, or ammonia. Both model configurations 

were compared to anticipate the process's optimal performance since the complexity of microbial activity 

is cited as a primary cause for the lack of fundamental information about anaerobic fermentation systems 

(Appels et al., 2011). The effects of pH, temperature, and ammonia on chosen biokinetic models are 

summarized in Table 4. Monod, Tessier, Sokol-Howell, Contois, and Ming models might be used to 

estimate biokinetic parameters with and without the impact of pH, temperature, or pH-temperature; and 

existing biokinetic parameters without the influence of pH, temperature, or pH-temperature. On the 

other hand, Hinshelwood, Aiba, Ghose-Tyagi, and Severly could be utilized to estimate biokinetic 

parameters based on ammonia, pH-ammonia, temperature-ammonia, and pH-temperature-ammonia 

influences. 
 

Table 4. Selected biokinetic models using the influence of pH, temperature, and ammonia. 
 

Effect Variable 

input 

Biokinetic model 

MOa TEb SHc COd MIe HIf AIg GTh SEi 

pH I • • • • •     

Ammonia P, Pm      • • • • 

Temperature θ • • • • •     

pH-ammonia I, P, Pm      • • • • 

pH-temperature I, θ • • • • •     

Temperature-ammonia θ, P, Pm      • • • • 

pH-temperature-ammonia I, θ, P, Pm      • • • • 

No pH-temperature-

ammonia 

- • • • • •     

aMonod; bTessier; cSokol-Howell; dContois; eMing; fHinshelwood; gAiba; hGhose-Tyagi; ISeverly 

 

Through rigorous statistical analysis, the selected biokinetic models possess a high degree of 

accuracy in predicting the behavior of anaerobic fermentation reactors (Maleki et al., 2018). These 

biokinetic models have undergone extensive testing and validation to assess their predictive capabilities 

under varying conditions and scenarios. The statistical analysis involved comparing model-predicted data 

with actual experimental results obtained from anaerobic fermentation reactors. To evaluate the 

performance of the biokinetic models, various statistical metrics and error measures were employed, 

including the coefficient of determination (R2), root mean square error (RMSE), mean absolute error 

(MAE), and relative percentage error (RPE) (Alavi and Ansari, 2022; Yaqub and Lee, 2022; Zhong et al., 

2021). These metrics allowed researchers to quantitatively assess the agreement between the model 

predictions and the experimental data. A high R2 value close to 1 indicates a strong correlation between 

the model predictions and the actual measurements, signifying the model's ability to capture the 

underlying processes accurately. Moreover, low RMSE and MAE values indicate that the model's 

predictions are close to the observed data points, indicating high accuracy. Additionally, the RPE provides 

insights into the percentage deviation between the model predictions and the experimental values, 

enabling a comprehensive assessment of model performance (Huang et al., 2020). 
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Additionally, the models' complexity and goodness of fit were evaluated using Bayesian 

Information Criteria (BIC) and Akaike Information Criteria (AIC) (Kurniawan et al., 2018). The BIC and 

AIC allowed for a comprehensive comparison of the models' abilities to balance the trade-off between 

complexity and accuracy, aiding in selecting the most appropriate model. Furthermore, bias and accuracy 

factors were utilized to gauge the models' ability to capture the dynamic behavior of anaerobic 

fermentation processes and account for any systematic deviations between model predictions and 

experimental data (Kurniawan et al., 2018 & Tao et al., 2014). These factors allowed for a thorough 

assessment of the models' reliability in representing the intricate microbial interactions and metabolic 

pathways involved in anaerobic fermentation. 

 

5. Conclusions 
The microbial growth models may be changed by adding the hydrolysis parameters and inhibitory 

effects to offer a full update for the anaerobic fermentation process. An organism's half-saturation 

constant, a biokinetic parameter known as a hydrolyzed substrate transport rate coefficient, and a 

biochemical yield rate coefficient are all examples of biokinetic parameters. These approaches might be 

interesting to a large scientific community addressing anaerobic biological wastewater treatment, 

mathematical modeling, simulation, and optimization of the process. Further investigation is warranted 

for the empirical and mechanistic validation of these proposed update models. 

 

6. Abbreviations 

f  Inhibition factor 

I pH factor 

k  Hydrolyzed substrate transport rate coefficient (L g−1 d−1) 

Kh  Substrate hydrolysis rate coefficient (d−1) 

Ki Inhibitory constant required to produce half maximum inhibition (g L−1) 

KS  Half-saturation constant with respect to hydrolyzed substrate (g L−1) 

P Product inhibition concentration (g L−1) 

Pm Maximum product inhibition concentration (g L−1) 

pHmax pH maximum for most bacteria ranges 

pHmin pH minimum for most bacteria ranges 

Sg  Concentration of hydrolyzed substrate intracellular cell (g L−1) 

Sh  Concentration of hydrolyzed substrate (g L−1) 

S0-i  Substrate concentration in the influent (g L−1) 

Si  Substrate concentration in the effluent (g L−1) 

T The operation temperature (˚C)  

Tmax The upper temperature (˚C)  

Tmin The lower temperature (˚C)  

Topt The temperature at which the maximum specific growth rate equals its optimal value (˚C) 

X  Concentration of active cell biomass (g L−1) 

X0 Initial concentration of active cell biomass (g L−1) 

Y Biomass yield coefficient (g g−1) 

μ Maximum specific growth rate of a microorganism (d−1) 

μmax Maximum specific growth rate of a microorganism (d−1) 

θ Temperature factor 
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