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Abstract  
Dependable raw-water service depends on asset condition, institutional capability, and watershed 

context, existing checklists in Indonesia fail to produce a validated, decision-ready performance score.  

This study develops a composite performance indicator for raw water infrastructure that incorporates 

technical (Tk), institutional/non-technical (NT), and environmental (Li) dimensions. Data were collected 

from 21 schemes in Lombok–Sumbawa, West Nusa Tenggara Province, Indonesia (NTB), with 160 

respondents, using field assessments and 1–4 scale questionnaires. Estimated reflective formative PLS-

SEM, then applied GRG calibration to minimize deviation from field scores under non-negativity and unit 

sum constraints for interpretability and portability. All pillars contribute positively and significantly to 

the composite index, which exhibits high explanatory power (R² = 0.997). The calibrated index is PIRWSS 

= 0.440 PITk + 0.340 PINT + 0.220 PILi, with SSR ≈ 83.412, RMSE ≈ 0.522, MSE ≈ 5.721, and ≈ 99.70% accuracy 

relative to field benchmarks. Cross-site analysis shows higher performance in Lombok than in Sumbawa, 

reflecting hydroclimatic conditions and conveyance configurations. The index provides utilities and 

regulators with a transparent, reproducible framework for benchmarking and prioritizing operations, 

maintenance, rehabilitation, and source-water protection. 

 

Keywords: Raw water supply systems; performance index for raw water supply systems (pirwss); pls-sem; 

grg optimization; watershed management 

 

1. Introduction 

Reliable raw water supply underpins public health, economic productivity, and the resilience of 

downstream drinking water services, yet performance is difficult to appraise because raw water systems 

are socio-technical networks spanning source catchments, intake works, transmission pipelines, 

treatment interfaces, and the institutions that operate them. In Indonesia’s island provinces, such as West 

Nusa Tenggara Province, Indonesia (NTB), hydrologic seasonality, land-use change, and dispersed 

settlements amplify operational risks, heightening the need for an empirically grounded and 

operationally usable assessment framework to guide maintenance, rehabilitation, and investment (Guo 

et al., 2020). Current national practice references the Directorate General of Water Resources Circular 

Letter (SE) 03/2021, a readiness for operation and maintenance checklist adapted from irrigation 

performance concepts. While useful for documenting infrastructure elements and organizational 

arrangements, SE 03/2021 omits key environmental attributes of source areas and does not yield a 

quantified, system-level performance index, consequently, gaps persist between ideal requirements and 

field realities. Evidence from NTB indicates that several variables needed to reflect actual raw water 

performance particularly environmental and non-technical dimensions are either insufficiently in 

assessments now in use (Zakiyayasin Nisa’ et al., 2023). 
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Internationally, two strands dominate the assessment landscape. Utility oriented systems 

emphasize service continuity, losses, adequacy, and quality, but overwhelmingly target distribution 

rather than the upstream raw water segment and often rely on expert judgment rather than reproducible, 

data driven aggregation. The International Water Association (IWA) recommends KPIs coverage, quality 

compliance, and efficiency that, while valuable, require tailoring to raw water functions (Moudi, 2022). 

In parallel, urban water security and integrated water resources management frameworks broaden the 

lens to governance and basin conditions, including Sustainable Development Goal 6, yet typically operate 

at city or basin scales too coarse to guide day-to-day operation and maintenance (O & M), decisions for 

specific intakes and conveyance systems (Engelenburg et al., 2021). Consequently, asset rehabilitation and 

O&M prioritization for raw water systems can be poorly aligned with actual performance constraints. 

Environmental change further strengthens the case for integrating watershed indicators into raw water 

performance assessment. Deforestation, agricultural intensification, and urban expansion can degrade 

source quality and reliability, increasing turbidity and nutrient loads and driving up treatment costs; 

climate variability compounds these pressures and introduces greater uncertainty in seasonal availability 

(Macharia et al., 2021). Performance tools that ignore environmental condition therefore risk 

misdiagnosing bottlenecks and misprioritizing investments. 

Composite indicator design offers a transparent pathway to integrate heterogeneous evidence 

technical, institutional, and environmental into a single decision aid when built on clear rules for variable 

selection, normalization, weighting, and validation. Latent variable modeling provides the statistical 

machinery to bind these dimensions, variance-based structural equation modeling (PLS-SEM) is well 

suited when constructs are measured by multiple indicators, sample sizes are modest, and distributional 

assumptions are relaxed. Established criteria ensure measurement quality while a structural model 

estimates the relative contribution of each latent dimension to overall performance (Joseph F Hair et al., 

2017). Numerical optimization can then refine weights to improve predictive fit under practical 

constraints; the generalized reduced gradient (GRG) method remains a robust choice for constrained 

nonlinear problems of this kind (Lasdon et al., 1978). Empirically, across 21 raw-water schemes in NTB 

with inputs from 160 stakeholders, we document quantifiable constraints: an intaketransmission line 

designed for 50 L/s delivers only 30 L/s at the treatment plant (idle capacity 20 L/s); Lombok’s wetter, 

largely gravity-fed context (1,441 mm/year) contrasts with drier, pump-dependent Sumbawa (1,176 

mm/year), and several Sumbawa schemes fall in “poor/less-good” categories, evidence of real 

performance deficits rather than assumptions. These conditions elevate O&M burdens and reliability 

risks, making a decision-ready index for the raw-water segment operationally urgent (BWS NT I, 2023). 

Against this backdrop, a clear gap persists. Most utility metrics prioritize distribution-side outcomes, and 

most water security frameworks aggregate at scales too coarse for O&M, few instruments directly target 

the raw water segment as a distinct operational domain linking source waters to treatment plants. Even 

fewer combine a validated latent-variable structure with numerical optimization and verify predictive 

performance against field data across diverse hydro-climatic settings (Chakraborty et al., 2022). 

This study addresses those gaps by proposing and validating a composite Performance Index for 

Raw Water Supply Systems (PIRWSS) that integrates three pillars technical, non-technical 

(institutional/managerial), and environmental so that asset condition, institutional capacity, and 

catchment characteristics jointly inform an overall score. The research was undertaken on Lombok and 

Sumbawa (NTB) using field surveys and questionnaires administered to 160 stakeholders across 21 

locations, covering a diversity of source types, conveyance configurations, and managerial contexts. 

Methodologically, we specify a reflective formative measurement structure and estimate a structural 

model using PLS-SEM, then calibrate coefficients via GRG subject to normalization and monotonicity 

constraints to enhance predictive fidelity. The novelty lies in extending SE 03/2021 with an explicit, 

quantified environmental pillar, combining validated latent variable modeling with GRG calibration to 

produce reproducible weights, and demonstrating predictive accuracy across multiple real world sites in 

an island context where environmental pressures and institutional capacity jointly shape outcomes. 
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Objectives are to: (i) evaluate existing systems using SE 03/2021 as baseline evidence; (ii) quantify 

relationships among technical, non-technical, and environmental dimensions via PLS-SEM; (iii) calibrate 

PIRWSS weights via GRG under interpretability constraints; (iv) validate predictive alignment against 

field scores across 21 schemes; and (v) provide a transparent benchmark to prioritize O&M, rehabilitation, 

program handover, and policy dialogue. The impact is practical and immediate, the PIRWSS enables 

comparable, site specific benchmarking, supports O&M planning, rehabilitation, and program handover, 

and provides a transparent basis for policy dialogue on sustainability oriented management of raw water 

supply systems in NTB and similar settings. 

 

2. Methods 
2.1. Study Area and Data Used 

The study focuses on the raw-water segment in Lombok and Sumbawa, West Nusa Tenggara 

Province, Indonesia (NTB), from source catchments and intake works through gravity- or pump-fed 

conveyance to pre-treatment reservoirs, i.e., upstream of drinking water distribution. Twenty-one sites 

spanning heterogeneous hydro-climatic and topographic settings were surveyed to capture variation in 

source types, conveyance configurations, and organizational contexts. A mixed-methods design 

combined primary and secondary evidence. Primary data comprised site visits, semi-structured 

observations, structured interviews, documentation, and questionnaire surveys administered to utility 

operators, provincial planners, river-basin staff, and water users. Two sampling waves yielded 160 

respondents (wave-1 = 111; wave-2 = 49). Instruments used a 1–4 scale with indicator-specific descriptors 

to maintain alignment between field observation and respondent scoring; all instruments were piloted 

and refined to improve clarity and reduce measurement error. Secondary sources included technical 

inventories (asset registers, production logs), institutional records (budgets, staffing, SOPs), and hydro-

environmental information (land cover, watershed condition). As a sectoral baseline, the national 

technical guidance for raw-water performance appraisal (SE 03/2021) was reviewed alongside 

administrative and technical records to cross-check responses and reconcile inconsistencies. 

 

 
 

Figure 1. Study locations on Lombok Island 
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Figure 2. Study locations on Sumbawa Island 

 

Figure 1 and Figure 2 illustrate the research site in connection with Table 1 below, detailing areas 

throughout NTB, including Lombok and the Sumbawa Islands, comprising 21 research sites.  Thirteen 

spots on Lombok Island and eight locations on Sumbawa Island have all been administered by the General 

Institution of Drinking Water Authority in Indonesia (PDAM). 
 

Table 1. Research location database raw water 
 

No. Unit of raw water Regency Type of source Type of intake 

structure 

Lombok Island 

1 Lebah Sempage West Lombok Water source Broncaptering 

2 Sarasuta West Lombok Water source Broncaptering 

3 Remening West Lombok River Intake of weir 

4 Serepak West Lombok River Intake of weir 

5 Sesera Central Lombok Water source Broncaptering 

6 Rangat West Lombok Water source Broncaptering 

7 Pandanduri East Lombok Dam Intake of dam 

8 Sekeper North Lombok River Intake of weir 

9 Tibu Ulik East Lombok Small dam Intake of small dam 

10 Sordang East Lombok River Free Intake 

11 Singang Pitu Nai North Lombok River Free Intake 

12 Jonplanka North Lombok Water source Broncaptering 

13 Otak Aik West Lombok Water source Broncaptering 

Sumbawa Island 

1 Semongkat Sumbawa River Intake of weir 

2 Brangdalap Sumbawa River Intake of weir 

3 Tiu Pasai Sumbawa Small dam Intake of small dam 

4 Labangka Sumbawa Dam Intake of dam 

5 Monggelenggo Dompu River Intake of weir 

6 Ncoha Bima Small dam Intake of small dam 
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No. Unit of raw water Regency Type of source Type of intake 

structure 

7 Patula Bima River Intake of weir 

8 Rababaka Dompu River Intake of weir 

 

2.2. Baseline Assesment Framework  

Directorate General of Water Resources Circular  SE 03/2021 structures appraisal into six variables 

physical infrastructure, service productivity, supporting facilities, institutions and human resources, 

documentation, and water-user associations with predefined weights. Gap analysis revealed two 

shortcomings for decision support in NTB, several regulatory variables are not operationally tied to 

measurable field conditions and environmental/source area indicators are under-represented despite 

their known influence on reliability and treatment effort. A variable mapping matrix therefore aligned 

the six regulatory variables with three higher-level latent dimensions used in the model: technical, non-

technical, and environmental (Mergoni, Inverno and Carosi, 2022). 

The technical dimension was operationalized by two parameter groups: (A1) source quantity and 

reliability (availability, production capacity, continuity, losses, O&M adequacy) and (A2) physical asset 

condition (intakes, conveyance mains, supporting works). The non-technical dimension encompassed 

governance and managerial readiness (budgeting, staffing, planning, documentation, user associations). 

The environmental dimension incorporated watershed condition (forest cover, open land, 

plantation/agriculture, built-up area) and source water quality proxies. Indicators were defined with 

transparent 1–4 descriptors to minimize rater ambiguity and ensure reproducibility (Table 2). To preserve 

diagnostic value and reduce compensability, aggregation followed a hierarchical scheme, indicators, 

parameters, dimensions, composite index, with normalization via ratio or ordinal scaling as appropriate. 

Missing values were handled via listwise deletion when infrequent and via conservative imputation 

otherwise. For external comparability with regional utility practice, baseline scoring referenced the four 

aspect drinking water supply system improvement agency in Indonesia (BPPSPAM) structure financial 

(0.25), service (0.25), operational (0.35), human resources (0.15) as a non-physical benchmark for later 

validation. Crucially, weights at each aggregation tier were estimated empirically rather than assigned a 

priori, consistent with composite-indicator best practice (Mao et al., 2019). 
 

Table 2. Indicator hierarchy and measurement model, 
 

Description Performance Value (%) Performance Value 

(Number) 

Very good performance 80-100 4 

Good performance 70-80 3 

Not good performance 55-70 2 

Bad performance <55 1 
 

Source: Directorate General of Water Resources Circular SE 03/2021 

 

2.3. PLS-SEM Model 

Given multi-indicator constructs and a modest sample, we employed variance-based structural 

equation modeling (PLS-SEM) to estimate measurement and structural components. Indicators were 

specified reflectively within the technical, non-technical, and environmental dimensions. Measurement 

quality followed established criteria, indicator reliability (outer loadings ideally ≥ 0.70), internal 

consistency (Composite Reliability ≥ 0.70), convergent validity (AVE ≥ 0.50), and discriminant validity 

via the Fornell–Larcker criterion and the heterotrait monotrait ratio (Fornell et al., 1981). Low-loading 

indicators were pruned only when justified by both statistics and field plausibility; the final run satisfied 

AVE, CR, and α benchmarks. The inner model related the three pillars to the composite performance 

index PIRWSS, with path coefficients obtained via bootstrapping. Collinearity was examined through 
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inner VIFs; predictive relevance was assessed using Stone–Geisser’s Q² and, where feasible, cross-

validated redundancy (Joseph F Hair et al., 2017). This SEM stage yielded a closed-form estimator of the 

composite index and provided data-driven pillar weights for subsequent calibration. Best-practice 

considerations for infrastructure index construction guided the two-step evaluation (measurement to 

structural) and reporting of reliability, R², effect sizes (f²), and pathway significance (Alismaiel, 2021; 

Tefera and Hunsaker, 2021). 

 

2.4. Calibration and Validation Generalized Reduced Gradient (GRG) 

To enhance predictive alignment with observed field performance, we calibrated weights using 

the Generalized Reduced Gradient (GRG) method, a robust approach for constrained nonlinear 

optimization (Lasdon et al., 1974, 1978). The objective minimized the sum of squared residuals (SSR) 

between modeled and observed site-level performance subject to non-negativity and unit-sum 

constraints on weights at each tier; monotonicity (higher indicator values must not reduce the 

composite); and stability penalties to avoid extreme, non-interpretable weights. Calibration was 

performed at sub-index and composite levels to maintain coherence between measurement and decision 

layers. In solver settings and reduced-gradient diagnostics were documented; illustrative outputs for the 

technical sub-index report RMSE and SSR traces used to confirm convergence. The GRG step is 

complementary to PLS-SEM refining empirically estimated coefficients within practical constraints to 

produce a decision-ready index (Joe F Hair et al., 2017). Related optimization guidance in composite-

index contexts further supports this integration (Budianto et al., 2025; Sankar, 2024).  

Model quality was examined on multiple fronts. In-sample statistical validity drew on PLS-SEM 

diagnostics construct reliability/validity (α, CR, AVE, HTMT), explained variance (R²), and path 

significance to confirm adequacy of measurement and structural specifications (Fornell et al., 1981). 

Predictive validation compared modelled PIRWSS against field-measured performance for all 21 locations; 

the calibrated model closely reproduced observed values, with consistent classification under the study’s 

performance classes. Content validity was established via expert review in stakeholder meetings, ensuring 

indicators and weights were credible to practitioners and aligned with operational realities. To guard 

against overfitting, we conducted sensitivity analyses to perturb indicator values and weights within 

plausible bounds and observed rank stability across sites. Where data allowed, hold-out tests and cross-

validated redundancy (Q²) were used to assess out-of-sample relevance (Joseph F Hair et al., 2017). 

Environmental indicators were triangulated with independent, map-based land-cover evidence using a 

standardized legend, reducing observer bias and reflecting contemporary links between watershed 

condition, reliability, and treatment effort. For transparency and replication, the dissertation provides 

worked detailing computation of pillar scores and PIRWSS using the calibrated weights, alongside the 

classification thresholds used operationally for raw-water networks. 

A composite-index design was adopted because it converts heterogeneous technical, 

institutional, and environmental indicators into a single decision aid that supports benchmarking and 

policy dialogue an approach widely used in water and nexus assessments and recommended to 

accompany transparency in normalization, weighting, and sensitivity analysis (Ayadi et al., 2024; He et 

al., 2024; Simpson et al., 2022). PLS-SEM was chosen to estimate a prediction-oriented latent structure 

with multi-indicator constructs under modest sample sizes and relaxed distributional assumptions, 

consistent with our field design and prior guidance (Joseph F Hair et al., 2017). Constrained numerical 

calibration via GRG was then used to align modeled scores with observed site performance while 

enforcing interpretability (non-negativity, unit-sum, monotonicity); optimization-aided index 

construction is increasingly applied when aggregating multi-source, multi-scale evidence in water 

performance monitoring to improve robustness and decision usefulness (Su and Cao, 2022). This 

sequencing (PLS-SEM and GRG calibration) thus reflects the data structure (n=21 sites; mixed 

measurement scales), operational constraints, and the study’s goal of producing a transparent, decision-
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ready index for O&M (Lasdon et al., 1974). See also recent utility benchmarking frameworks showing the 

value of composite performance layers for managerial action (Ganjidoost et al., 2021). 

 

3. Result and Discussion 
3.1. Measurement and Structural Model (PLS-SEM) and Generalized Reduced Gradient (GRG) 

The study encompassed 21 raw-water supply sites in NTB, 13 in Lombok and 8 in Sumbawa 

capturing contrasts in hydro-climatic regimes and infrastructure typologies. Field surveys and 

questionnaires yielded 160 respondent records from utility staff, basin agencies, and users, providing 

observed-condition data and structured judgments for indicator scoring, site narratives also record event-

driven variability most notably the 2018 earthquake and subsequent rehabilitation reinforcing the need to 

couple technical and environmental diagnostics within routine performance assessment. Variance-based 

PLS–SEM supported a three-pillar structure technical (PITk), non-technical (PINT), and environmental 

(PILi). Measurement quality met accepted criteria for reflective models: high outer loadings, CR ≥ 0.70, α 

≥ 0.70, and AVE ≥ 0.50 (Table 3); discriminant validity was confirmed with cross-loadings highest on their 

intended constructs (Fornell et al., 1981). Structural model indicated that each pillar loads positively and 

significantly on the composite index (PIRWSS), with R² ≈ 0.997 and bootstrap confidence intervals that 

exclude zero for all paths, consistent with best-practice SEM reporting (Joseph F Hair et al., 2017). PLS–

SEM is appropriate under relaxed distributional assumptions. To enhance operational usability, 

coefficients were subsequently calibrated via GRG subject to non-negativity, unit-sum, and monotonicity 

constraints, minimizing prediction error while enforcing interpretability.  

Beyond reporting thresholds, the pattern in Table 3 is informative. Constructs such as 

Documentation (CR = 0.903; AVE = 0.823) and Raw-Water Infrastructure Assets (CR = 0.867; AVE = 0.766) 

exhibit strong convergent validity, consistent with their highly observable, procedure-bound indicators. 

By contrast, Organization & Personnel shows a lower α = 0.650 despite acceptable CR = 0.851; this 

attenuation is expected with few, heterogeneous items and reflects genuine dispersion in managerial 

capacity across sites rather than measurement weakness. At the second-order level, all three pillars exceed 

CR ≥ 0.94 and AVE ≥ 0.63, indicating that the latent structure is well captured and justifying use of pillar 

scores in the calibrated index. High R² (≈ 0.997) alone could raise overfitting concerns; however, our 

bootstrapped paths, cross-validated redundancy (Q²), and later calibration-stage error checks collectively 

support predictive rather than merely descriptive fit (Joseph F Hair et al., 2017). 
 

Table 3. Results average variance extracted (AVE) 
 

Dimension Cronbach's Alpha α CR AVE 

A1 = Water Source Quantity 0.917 0.919 0.936 0.710 

A2 = Physical Condition of Raw Water Infrastructure 0.858 0.864 0.904 0.702 

B1 = Socioeconomic and Cultural 0.930 0.931 0.945 0.741 

B2 = Policies/Regulations 0.869 0.871 0.910 0.718 

B3 = Organization & Personnel 0.650 0.654 0.851 0.741 

B4 = Managing Institution 0.814 0.818 0.890 0.730 

B5 = Documentation 0.785 0.787 0.903 0.823 

B6 = Raw Water Infrastructure Assets 0.695 0.699 0.867 0.766 

B7 = Human Resources 0.759 0.764 0.862 0.675 

C1 = Surrounding Environment of Water Source 0.910 0.910 0.930 0.689 

C2 = Sustainability of Water Source 0.757 0.758 0.891 0.804 

Environmental Variable 0.932 0.932 0.944 0.677 

Non-Technical Variable 0.972 0.973 0.974 0.635 

Technical Variable 0.944 0.946 0.952 0.667 

Performance Index 0.973 0.973 0.975 0.648 

 



 
8 

3.2. Calibrated Index and Predictive Performance 

Following SEM estimation, GRG optimization refined the coefficients under normalization, non-

negativity, and monotonicity constraints (Lasdon et al., 1974, 1978). The final closed-form model using 

equiation (1): 

 

PIRWSS = 0.440 PITk + 0.340 PINT + 0.220 PILi      (1) 

 

Goodness-of-fit is strong on the composite-index scale, RMSE ≈ 0.522; on the field-score scale, 

SSR ≈ 83.412 and MSE ≈ 5.721. Because RMSE and MSE are reported on different scales in the dataset (index 

vs. field scores), they are not directly comparable; the manuscript therefore reports R² ≈ 0.997 (explained 

variance) for interpretability alongside scale-consistent error metrics. The calibrated hierarchy implies 

material contributions from all three pillars, with technical drivers exerting the largest effect, followed by 

non-technical and environmental factors (Figure 3). This ordering coheres with utility-performance 

literature emphasizing asset condition, capacity, and O&M as first-order determinants, while also 

recognizing governance enablers and catchment conditions that shape reliability and treatment effort. 

The calibrated weights, 0.440 (PITk) > 0.340 (PINT) > 0.220 (PILi), quantify an intuitive hierarchy: 

immediate performance is most sensitive to asset integrity, continuity, and losses (technical), but it is 

amplified or constrained by governance (non-technical) and stabilized over the medium term by source-

area condition (environmental). Error diagnostics show small site-level deviations between modeled and 

field scores (absolute differences typically ≤ ~6 points), with the largest positive gap at Otak Aik (field 67.8 

vs model 73.6), explained by an exceptional environmental score (10.00) that the field composite 

underweights and one of the larger negative gaps at Labangka (59.1 vs 55.08), where lower environmental 

support (7.65) and pumping exposure likely reduce realized performance. Across sites, most absolute 

deviations are ≤ ~6 points, and sign/magnitude of the gap aligns with pillar imbalances (e.g., very high 

environmental scores can lift modeled PI above the field composite when governance is only moderate). 

Interpreting RMSE/MSE alongside R² avoids scale confusion (index vs field units) and confirms that 

calibration improves decision-useful ranking without sacrificing interpretability (Lasdon et al., 1974, 1978). 

Figure 3 shows clustered bars Lombok sites generally right-shifted (higher PI) due to gravity conveyance 

and steadier yield, whereas Sumbawa sites left-shift under pumping head and seasonal deficit; this pattern 

matches rainfall and conveyance contrasts documented for the study area. 

 
 

Figure 3. Comparison between field performance index (PI field) and calibrated raw-water performance 

index (PI raw water) across 21 schemes 
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3.3. Dimension Level Results 

Technical (PITk) is indicators of source quantity/reliability and physical asset condition are the 

strongest drivers of PIRWSS. Gravity-fed schemes in Lombok generally scored higher on reliability and 

O&M adequacy than pump-dependent systems in Sumbawa, where seasonality and head requirements 

depress availability and heighten mechanical vulnerabilities. These signals align with resilience and 

reliability oriented metrics in water-system design and with multi-criteria planning that elevates 

continuity and condition among top priorities. Non-technical (PINT) is governance and managerial 

readiness budgeting, staffing, planning, documentation, and user associations shows a positive, significant 

path to PIRWSS, confirming that institutions and processes are co-determinants of service outcomes; 

notably, asset-management and documentation quality emerge as salient levers, consistent with the high 

loading for the service data book indicator. Environmental (PILi) is land-cover composition in source areas 

and source-sustainability proxies provide additional explanatory power and improve alignment with field 

performance. The pillar’s positive, significant path weight indicates that better watershed condition is 

associated with higher raw-water performance, consistent with evidence that degraded catchments 

elevate turbidity and nutrients, increase treatment costs, and threaten reliability. Environmental 

indicators discriminate performance across islands Lombok’s more reliable sources and gravity systems 

support steadier PIRWSS, while Sumbawa’s spatially uneven sources and pumping reliance increase 

vulnerability to demand fluctuations and non-revenue water consistent with the 0.220 composite weight 

in the integrated index. Performance index shown in Table 4. 

A closer examination clarifies why sites diverge despite compliance. Upper-quartile performers 

(PI ≈ 73–78; Rangat, Sekeper, Serepak, Sarasuta, Otak Aik) pair strong technical scores (15–17) with 

supportive environmental conditions (8.6–10.0), aided by gravity-fed conveyance and steadier hydrology. 

Mid-tier sites (60–70) possess adequate assets but are constrained by middling documentation/asset 

management or moderate source stress, implying tractable O&M remedies. Low performers (<55; 

Mongglenggo, Rababaka, Sordang, Tibu Ulik) combine weak technical scores (5–10) with pumping head 

and fragile catchments (7.2–8.1), elevating outages and non-revenue water. These patterns mirror NTB’s 

context: Lombok ≈1,441 mm/year versus Sumbawa ≈1,176 mm/year, and idle capacity (50 L/s designed, 30 

L/s delivered). 

Table 4 is the technical column is the leading indicator of final PI; values ≥ 15 generally coincide 

with PI ≥ 70 (e.g., Rangat, Sekeper, Sarasuta). Where non-technical dips < 3.7, scores can be pulled down 

despite adequate assets (e.g., Pandangduri). Conversely, environmental ≥ 9.5 can offset moderate 

governance (e.g., Otak Aik). This explains why some sites remain mid-tier although they satisfy individual 

standards, because composite performance depends on co-movement across pillars rather than any single 

checklist item. 
 

Table 4. Field performance index and raw water performance index values 
 

Source Location Technical Non-Technical Environmental Field PI Raw Water PI 

Lebah Sempage 13.0 4.75 9.06 67.6 68.22 

Sarasuta 15.0 4.64 9.06 72.0 73.13 

Remening 12.0 4.19 9.06 65.5 64.11 

Serepak 15.6 4.16 9.06 71.9 73.39 

Sesera 12.8 4.46 8.59 66.9 65.72 

Rangat 17.0 4.64 9.06 77.0 78.33 

Pandangduri 15.0 3.70 8.59 66.5 69.39 

Sekeper 17.2 4.60 8.59 74.0 77.54 

Tibu Ulik 6.2 3.33 8.12 45.5 44.31 

Sordang 5.0 3.93 8.12 45.5 42.81 

Singang Pitu Nai 15.0 4.24 8.12 67.5 69.65 

Jonplanka 11.6 4.19 8.12 61.0 60.67 
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Source Location Technical Non-Technical Environmental Field PI Raw Water PI 

Otak Aik 15.0 3.93 10.00 67.8 73.60 

Semongkat 10.0 3.72 8.12 56.2 55.24 

Brangdalap 8.8 3.72 8.12 54.2 52.13 

Tiu Pasai 9.2 3.59 8.12 52.0 52.82 

Labangka 10.2 3.91 7.65 59.1 55.08 

Mongglenggo 5.0 3.50 7.65 43.6 40.49 

Ncoha 10.4 3.46 7.18 51.8 53.19 

Patula 9.8 3.42 7.18 50.3 51.50 

Rababaka 6.2 3.25 7.18 44.5 41.69 

 

4. Conclusions 

This study set out to construct a decision-ready composite index for raw-water systems and to 

test it against field reality in NTB. First, a baseline appraisal anchored in SE 03/2021 revealed wide 

performance dispersion across the 21 schemes, motivating an integrated measure rather than checklist 

compliance alone. Second, PLS-SEM established that the technical (PITk), non-technical (PINT), and 

environmental (PILi) pillars load positively and significantly on overall performance, with strong 

explanatory power (R² ≈ 0.997). Third, constrained GRG calibration produced an interpretable closed form 

PIRWSS = 0.440 PITk + 0.340 PINT + 0.220·PILi that respects non-negativity, unit-sum, and monotonicity. 

Fourth, validation against field scores showed high agreement (index-scale RMSE ≈ 0.522; field-scale MSE 

≈ 5.721, SSR ≈ 83.412), with small site-level deviations explained by pillar imbalances. Finally, the index 

functions as a transparent, scheme-level benchmark: it prioritizes O&M and rehabilitation where technical 

deficits dominate, signals managerial reforms when non-technical capacity constrains delivery, and 

justifies source-area protection when environmental conditions drive stability. These results directly 

answer the research objectives and deliver a validated, calibrated, and operationally useful index for raw-

water performance. 
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