Jurnal Pembangunan Wilayah dan Kota

Vol. 21, No. 3, 2025, 416-432

P-ISSN: 1858-3903 and E-ISSN: 2597-9272 https://ejournal.undip.ac.id/index.php/pwk/index

EVALUASI KINERJA PARKIR DAN LALU LINTAS PERKOTAAN PADA AKTIVITAS PERDAGANGAN DI PASAR KOLOMBO YOGYAKARTA

URBAN PARKING AND TRAFFIC PERFORMANCE EVALUATION OF TRADING ACTIVITIES IN COLOMBO MARKET YOGYAKARTA

Ridho Azahara*, Retna Hidayahb, Muhammad Khoirul Hadib, Muhammad Hajarb, Alif Aditia Saktib

^aPendidikan Teknologi dan Kejuruan, Universitas Negeri Yogyakarta; Sleman, Indonesia ^bPendidikan Teknik Sipil dan Perencanaan, Universitas Negeri Yogyakarta; Sleman, Indonesia

Info Artikel:

- Artikel Masuk: 30 Desember 2024
- Artikel diterima: 30 September 2025
- Tersedia Online: 30 September 2025

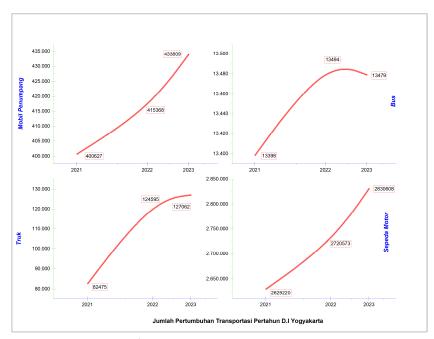
ARSTRAK

Pengelolaan transportasi di kawasan pasar tradisional menjadi tantangan dalam keterbatasan lahan parkir dan kemacetan lalu lintas. Keterbatasan lahan parkir dapat meningkatkan hambatan samping yang menghasilkan disrupsi pada kondisi lalu lintas di sekitarnya. Penelitian ini bertujuan untuk menganalisis kinerja parkir dan kinerja lalu lintas di kawasan Pasar Kolombo untuk memahami dampak aktivitas pasar terhadap efisiensi transportasi. Penelitian ini menggunakan metode deskriptif kuantitatif dengan melakukan pengamatan selama 7 hari. Hasil analisis menunjukkan bahwa: Pertama, kapasitas parkir di Pasar Kolombo tidak memenuhi kebutuhan parkir sehingga dibutuhkan penambahan lahan parkir berdasarkan Satuan Ruang Parkir (SRP) sebesar (Parkir Pasar A = 99 m², Parkir Pasar B = 87 m², dan Parkir Pasar C = 138 m²). Kedua, derajat kejenuhan kinerja lalu lintas pada arah selatan memiliki nilai paling tinggi dengan nilai rata-rata sebesar 0,37 dibandingkan arah utara dengan nilai sebesar 0,24. Ketiga, hambatan samping memiliki nilai rata-rata sebesar 760 masuk kedalam kategori tinggi. Keempat, kecepatan tempuh rata-rata kendaraan yang melewati kawasan Pasar Kolombo pada arah selatan sebesar 24,43 km/jam dan arah utara sebesar 27,29 km/jam pada pukul 05.30-08.00 WIB. Implikasi penelitian ini adalah menekankan integrasi antara manajemen parkir dan strategi lalu lintas untuk mendukung efisiensi transportasi serta aktivitas ekonomi dengan memenuhi kebutuhan parkir dan rambu-rambu lalu lintas di kawasan Pasar Kolombo.

Kata Kunci: Kinerja Parkir, Kinerja Lalu Lintas, Pasar Kolombo

ABSTRACT

Transportation management in traditional market areas poses challenges due to limited parking space and Traffic Congestion. Limited parking space can increase side barriers that disrupt traffic conditions in the surrounding area. This study aims to analyse parking performance and traffic performance in the Kolombo Market area to understand the impact of market activities on transportation efficiency. This study uses a quantitative descriptive method with observations conducted over 7 days. The results of the analysis show that: First, the parking capacity at Kolombo Market does not meet parking needs, so additional parking space is required based on the Parking Space Unit (PSU) of (Market Parking A = 99 $\,\mathrm{m}^2$, Market Parking B = 87 $\,\mathrm{m}^2$, and Market Parking C = 138 $\,\mathrm{m}^2$). Second, the degree of traffic performance saturation in the southern direction has the highest value with an average value of 0.37 compared to the northern direction with a value of 0.24. Third, side obstacles have an average value of 760, which falls into the high category. Fourth, the average speed of vehicles passing through the Kolombo Market area in the south direction was 24.43 km/hour and in the north direction was 27.29 km/hour at 05:30-08:00 WIB. The implication of this study is to emphasise the integration of parking management and traffic strategies to support transport efficiency and economic activity by meeting parking and traffic sign needs in the Pasar Kolombo area.


Keywords: Parking Performance, Traffic Performance, Kolombo Market

 $\label{localization} \textbf{Copyright} \, @ \, 2025 \, \text{by Authors, Published by Universitas Diponegoro Publishing Group.} \\ \textbf{This open-access article is distributed under a Creative Commons Attribution (CC-BY-NC-SA) 4.0 International license.} \\ \textbf{This open-access article is distributed under a Creative Commons Attribution (CC-BY-NC-SA) 4.0 International license.} \\ \textbf{This open-access article is distributed under a Creative Commons Attribution (CC-BY-NC-SA) 4.0 International license.} \\ \textbf{This open-access article is distributed under a Creative Commons Attribution (CC-BY-NC-SA) 4.0 International license.} \\ \textbf{This open-access article is distributed under a Creative Commons Attribution (CC-BY-NC-SA) 4.0 International license.} \\ \textbf{This open-access article is distributed under a Creative Commons Attribution (CC-BY-NC-SA) 4.0 International license.} \\ \textbf{This open-access article is distributed under a Creative Commons Attribution (CC-BY-NC-SA) 4.0 International license.} \\ \textbf{This open-access article is distributed under a Creative Commons Attribution (CC-BY-NC-SA) 4.0 International license.} \\ \textbf{This open-access article is distributed under a Creative Commons Attributed under a Creative Common Comm$

^{*}Korespondensi: ridhoazahar.2023@student.unv.ac.id

1. PENDAHULUAN

Pasar Kolombo merupakan pusat aktivitas perdagangan bagi masyarakat sekitar untuk memenuhi kebutuhan sehari-hari. Meningkatnya mobilitas masyarakat dan bertambahnya jumlah kendaraan pribadi membarikan dampak terhadap kebutuhan lahan parkir dan kinerja lalu lintas. Badan Pusat Statistik Provinsi Daerah Istimewa Yogyakarta (2024) mencatat pertumbuhan kendaraan semakin meningkat setiap tahunnya, pertumbuhan ini dapat dilihat pada Gambar 1.

Sumber: BPS Provinsi DIY, 2024 **Gambar 1.** Jumlah Kendaraan 3 Tahun Terakhir

Pertumbuhan ini menunjukkan adanya ketidakseimbangan antara tingginya kebutuhan transportasi yang menyebabkan minimnya ketersediaan fasilitas parkir yang memadai (Sudarjat, 2022). Ditambah lagi dengan tingginya jumlah pengunjung membuat kebutuhan ruang parkir melampaui kapasitas yang tersedia (Zhang et al., 2020; Zhang & Wang, 2020). Hal ini memicu berbagai masalah, seperti kurangnya lahan parkir, kemacetan lalu lintas dan polusi udara (Agustin et al., 2019; Huang et al., 2019). Meningkatnya jumlah kendaraan menyebabkan kemacetan (Isradi et al., 2022; Kondor et al., 2020). Selain itu, kurangnya lahan parkir sering kali menjadi penyebab utama kemacetan di kawasan perdagangan seperti pasar (Parmar et al., 2020). Tata kelola parkir yang buruk dapat mengurangi efisiensi lalu lintas, menurunkan kenyamanan pengguna jalan, dan menghambat produktivitas kawasan (Assemi et al., 2020). Padahal, transportasi memiliki pengaruh yang sangat besar terhadap pertumbuhan ekonomi (Rozaq, 2019; Zhu et al., 2022), dan berperan penting dalam berkontribusi pada pembangunan sosial di suatu daerah.

Penelitian miengenai evaluasi kinerja lahan parkir (Abdillah & Murtejo, 2019; Firmansyah & Hartantyo, 2024; Irawati et al., 2022; Kariyana et al., 2023; Priambodo et al., 2022), dan kinerja lalu lintas (Isradi et al., 2022; Maulana et al., 2024) telah banyak dilakukan baik secara parsial. Namun, belum ada penelitian yang secara khusus mengevaluasi kebutuhan lahan parkir dan kinerja lalu lintas secara bersamaan di kawasan ini. Oleh karena itu, penelitian ini bertujuan untuk mengidentifikasi hubungan antara kinerja parkir dan kinerja lalu lintas, sehingga dapat memberikan pemahaman yang lebih mendalam terkait interaksi antara kedua aspek tersebut. Dengan menggunakan pendekatan berbasis data, penelitian ini diharapkan dapat menghasilkan rekomendasi strategis yang mendukung perencanaan transportasi berkelanjutan dan pengelolaan tata ruang perkotaan yang lebih efektif.

DOI: 10.14710/pwk.v21i3.69757

2. DATA DAN METODE

Penelitian ini menggunakan metode deskriptif kuantitatif untuk mengevaluasi kebutuhan lahan parkir dan kinerja lalu lintas di kawasan Pasar Kolombo, Yogyakarta. Lokasi penelitian difokuskan pada area Pasar Kolombo, dengan pengamatan dilakukan pada hari kerja dan akhir pekan untuk melihat kebutuhan parkir dan arus lalu lintas. Waktu pengamatan dilakukan pada tanggal 29 November sampai 6 Desember 2024 pada pikul 05.30 - 08.00 WIB selama 7 hari.

2.1. Data Penelitian

Penelitian ini menggunakan data primer dan sekunder. Data primer mencakup jumlah kendaraan yang masuk dan keluar area parkir, kapasitas parkir yang tersedia, durasi penggunaan ruang parkir, serta volume lalu lintas di jalan sekitar kawasan Pasar Kolombo. Sementara itu, data sekunder diperoleh dari peta lokasi dan tata ruang kawasan Pasar Kolombo. Pengumpulan data dilakukan melalui survei lapangan, wawancara, dan teknik penghitungan kapasitas lalu lintas perkotaan. Observasi langsung digunakan untuk mengukur tingkat penggunaan lahan parkir, dan memantau alur lalu lintas. Wawancara dilakukan dengan pengguna parkir dan masyarakat sekitar untuk memahami kendala transportasi yang ada. Area parkir dikategorikan berdasarkan tiga aspek, yaitu lokasi, kepemilikan dan jenis kendaraan. Berdasarkan lokasinya, parkir diklasifikasikan menjadi parkir di luar jalan (off-street parking) dan parkir di badan jalan (on-street parking). Berdasarkan kepemilikannya, parkir dibagi menjadi parkir umum yang dimilki Pasar Kolombo dan parkir khusus yang dimilki oleh masyarakat setempat. Sementara itu, berdasarkan jenis kendaraan, parkir diklasifikasikan menjadi parkir kendaraan roda dua, serta kendaraan roda empat atau lebih. Klasifikasi ini digunakan untuk menganalisis kebutuhan dan pola penggunaan lahan parkir di kawasan Pasar Kolombo.

2.2. Analisis Kinerja Parkir

Analisis kinerja parkir membutuhkan data lahan parkir yang dimiliki oleh Pasar Kolombo dan yang dimiliki oleh masyarakat setempat. Lahan parkir umum dan khusus di kawasan Pasar Kolombo menggambarkan kapasitas, kepemilikan, dan distribusi area parkir. Lahan parkir umum merupakan parkir yang tersedia di Pasar Kolombo, sementara parkir khusus merupakan parkir yang dimiliki oleh warga sekitar dengan memanfaatkan luas tanah yang dimiliki sebagai lahan parkir.

Analisis kinerja parkir, dianalisis menggunakan karakteristik parkir dengan persamaan berikut (Abubakar et al., 2022; Astika & Arsyad, 2024).

a. Akumulasi Parkir

$$A_{P} = Ei - Ex + X \tag{1}$$

Ei merupakan kendaraan masuk; Ex merupakan kendaraan keluar; dan X merupakan kendaraan terparkir.

b. Volume Parkir

$$V_{P} = Ei + X \tag{2}$$

Ei merupakan kendaraan masuk; dan X merupakan kendaraan terparkir.

c. Durasi Waktu

$$D_W = T_{\text{masuk}} - T_{\text{keluar}} \tag{3}$$

T_{masuk} merupakan waktu kedatangan; dan T_{keluar} merupakan waktu keberangkatan.

Azahar, Hidayah, Hadi, Hajar, Sakti/ Jurnal Pembangunan Wilayah dan Kota, Vol. 21, No. 3, 2025, 416-432 DOI: 10.14710/pwk.v21i3.69757

d. TurnOver

$$T = \frac{Volume\ parkir}{Kapasita\ parkir} \tag{4}$$

e. Indeks Parkir

$$IP = \frac{Akumulasi\ parkir}{Kapasitas\ parkir} \tag{5}$$

f. Kapasitas Parkir

$$KP = \frac{S}{D}$$
 (6)

S merupakan jumlah total petak parkir; dan D merupakan rata-rata lama parkir (jam/kendaraan).

g. Kebutuhan Parkir

2.3. Analisis Kinerja Lalu Lintas Perkotaan

Berdasarkan Panduan Kapasitas Jalan Indonesia (2023), analisis kinerja lalu lintas dilakukan dengan menggunakan metode dengan persamaan berikut.

a. Volume Lalu Lintas

$$q = Jumlah Kendaraan x EMP x EMP_{SM} x EMP_{KS}$$
 (8)

EMP merupakan nilai faktor mobil (1); EMP_{SM} merupakan nilai faktor sepeda motor (0,25); dan EMP_{KS} merupakan nilai faktor mobil umum dan barang (1,2).

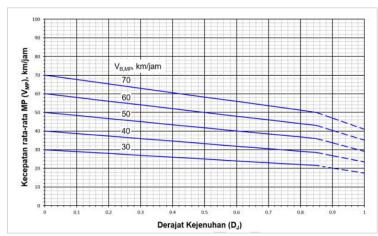
b. Kapasitas Jalan Perkotaan

$$C = C_0 \times FC_{LJ} \times FC_{PA} \times FC_{HS} \times FC_{UK}$$
 (9)

 C_0 merupakan nilai kapasitas dasar ideal; FC_{LJ} merupakan faktor koreksi lebar jalur; FC_{PA} merupakan faktor koreksi pemisah arah; FC_{HS} merupakan faktor koreksi hambatan samping; dan FC_{UK} merupakan faktor koreksi ukuran kota.

c. Kecepatan Arus Bebas

$$V_{B} = (V_{BD} + V_{BL}) \times FV_{BHS} \times FV_{BUK}$$
 (10)


 V_{BD} merupakan nilai kecepatan arus bebas dasar; V_{BL} merupakan faktor koreksi kecepatan bebas akibat lebar jalur; FV_{BHS} merupakan faktor koreksi kecepatan bebas akibat hambatan samping; dan FV_{BUK} merupakan faktor koreksi kecepatan bebas akibat ukuran kota.

d. Derajat Kejenuhan

$$D_{J} = \frac{q}{C} \tag{11}$$

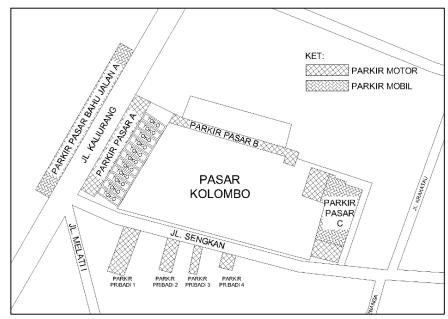
q merupakan volume lalu lintas; dan C merupakan kapasitas segmen jalan.

Penentuan Nilai V_T berdasarkan dengan tipe jalan 2/2-TT untuk setiap jalan pada satu arah.

Sumber: Direktorat Jenderal Bina Marga, 2003 **Gambar 2.** Diagram Nilai V_T

f. Waktu Tempuh

$$W_{T} = \frac{P}{VT} \tag{13}$$


P merupakan panjang segmen; dan V_T merupakan kecepatan tempuh.

3. HASIL DAN PEMBAHASAN

3.1. Kinerja Parkir

Kinerja parkir di kawasan Pasar Kolombo mencerminkan efisiensi pemanfaatan ruang untuk mendukung aktivitas pasar yang padat. Analisis terhadap kinerja parkir dilakukan dengan mengidentifikasi volume, kapasitas, serta kenyamanan dan kelancaran parkir pada aktivitas pasar di kawasan Pasar Kolombo. Gambar 3 merupakan peta Pasar Kolombo.

Tabel 1 dan 2 menjelaskan luas lahan parkir umum dan khusus serta kapasitas masing-masing area parkir. Tabel 1 menunjukkan perbedaan kapasitas dan luas lahan parkir di tiga lokasi. Parkir Pasar A menampung 14 mobil dan 168 sepeda motor dengan total luas lahan 480 m². Parkir Pasar B dapat menampung sebanyak 140 sepeda motor dengan luas lahan 377 m². Parkir Pasar C memiliki kapasitas terbesar, yaitu 32 mobil dan 108 sepeda motor di lahan seluas 810 m². Sedangkan pada Tabel 2, data menunjukkan kapasitas parkir sepeda motor di empat lokasi dengan luas lahan yang berbeda. Parkir pribadi 1 memiliki kapasitas terbesar, yaitu 75 sepeda motor dengan luas lahan 120 m². Parkir pribadi 2 menampung 30 sepeda motor dengan luas lahan 63 m², diikuti oleh Parkir pribadi 3 dengan kapasitas 20 sepeda motor dengan luas lahan 25 m².

Gambar 3. Peta Pasar Kolombo Yogyakarta

Tabel 1. Luas Lahan Parkir Pasar

Jenis Parkir	Kapas	itas Kendaraan	Luas Parkir	Luas Parkir	Luas
Jenis i dikii	Mobil	Sepeda Motor	Mobil	Sepeda Motor	Lahan
Parkir Pasar A	-	168	-	252 m²	480 m²
Parkir Bahu Jalan A	14	-	175 m²	-	175 m²
Parkir Pasar B	-	140	-	210 m ²	377 m²
Parkir Pasar C	32	108	400 m²	162 m²	810 m ²

Tabel 2. Luas Lahan Parkir Pribadi

Jenis Parkir	Kapas	itas Kendaraan	Luas Parkir	Luas Parkir	Luas
Jenis i di Kii	Mobil	Sepeda Motor	Mobil	Sepeda Motor	Lahan
Parkir Pribadi 1	-	75	-	90 m²	120 m ²
Parkir Pribadi 2	-	30	-	45 m²	63 m²
Parkir Pribadi 3	-	20	-	30 m²	47 m²
Parkir Pribadi 4	-	12	-	18 m²	25 m²

Tabel 3. Kinerja Parkir Pasar A - Sepeda Motor

			, ,					
Hari	Total Ke	endaraan	Akumulasi	Volume	Turn	Indeks	Kapasitas	Kebutuhan
пан	Masuk	Keluar	Tertinggi	Tertinggi	Over	Parkir	Kapasitas	Parkir
Senin	190	221	221	258	1,43	1,07		
Selasa	488	519	196	249	1,34	0,98		
Rabu	471	461	208	263	1,39	1,17	168	
Kamis	420	430	212	255	1,40	1,17	Kendaraan	99 m²
Jumat	453	454	184	231	1,22	1,03	Kendaraan	
Sabtu	241	299	168	192	1,02	0,81		
Minggu	232	240	168	192	1,03	0,81	_	
Rata-Rata	356	375	194	234	1,26	1,01		

Hasil analisis berdasarkan Tabel 3 kinerja parkir pasar A pada sepeda motor menunjukkan nilai ratarata indeks parkir (IP = 1,01 > 1) yang mengindikasikan bahwa kapasitas parkir tidak normal. Hasil ini menunjukkan bahwa area parkir pasar A pada sepeda motor memerlukan kapasitas parkir untuk menampung kendaraan sebesar 234 unit/hari dengan luas lahan sebesar 351 m², Sementara itu, kapasitas parkir saat ini hanya mampu menampung 168 kendaraan dengan luas lahan 252 m², sehingga diperlukan penambahan luas area parkir sebesar 99 m² agar kinerja parkir sesuai dengan Satuan Ruang Parkir (SRP).

Sedangkan hasil analisisi berdasarkan Tabel 4 kinerja parkir bahu jalan A pada mobil menunjukkan nilai rata-rata indeks parkir (IP = 0,59 < 1) mengindikasikan bahwa kapasitas parkir di bahu jalan normal dan area parkir pada mobil terpenuhi.

Tabel 4. Kinerja Parkir Bahu Jalan A - Mobil

Hari	Total Ke	endaraan Keluar	Akumulasi Tertinggi	Volume Tertinggi	Turn Over	Indeks Parkir	Kapasitas	Kebutuhan Parkir
Senin	31	28	14	13	0,79	0,85		
Selasa	30	29	14	13	0,79	0,77		ID 44
Rabu	22	21	12	7	0,44	0,64		IP < 1, maka
Kamis	15	23	8	10	0,68	0,31	14	
Jumat	17	23	8	10	0,69	0,44	Kendaraan	kapasitas parkir
Sabtu	23	29	8	14	0,74	0,39		•
Minggu	36	42	14	22	1,19	0,73		terpenuhi
Rata-Rata	25	28	11	13	0,76	0,59	-	

Tabel 5. Kinerja Parkir Pasar B – Sepeda Motor

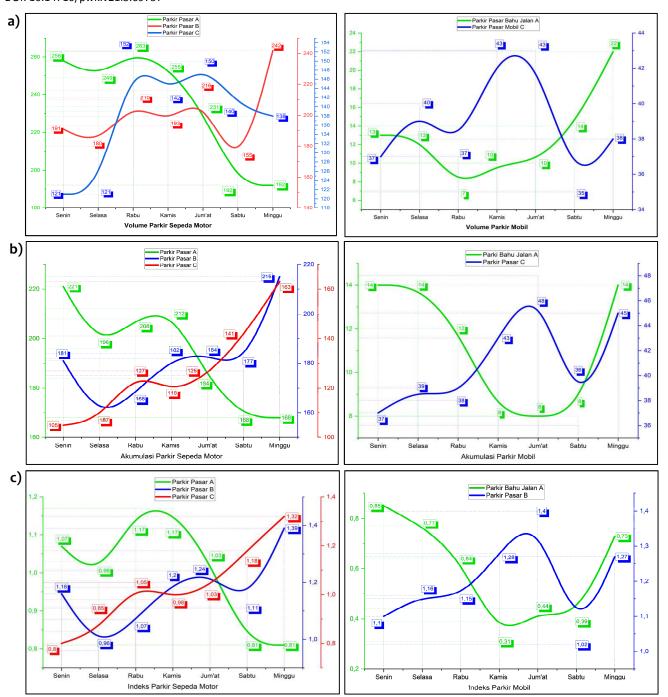
	Tabel 5. Killerja i arkii i asar b – Sepeda Motor										
Hari	Total Ke	Total Kendaraan		Volume	Turn	Indeks	Kapasitas	Kebutuhan			
Пан	Masuk	Keluar	Tertinggi	Tertinggi	Over	Parkir	Napasitas	Parkir			
Senin	394	379	181	191	1,27	1,16					
Selasa	443	400	157	180	1,05	0,96					
Rabu	390	379	168	210	1,32	1,07		87 m²			
Kamis	312	300	182	193	1,29	1,20	140				
Jumat	361	353	184	216	1,39	1,24	Kendaraan	0/111			
Sabtu	222	218	177	155	1,05	1,11					
Minggu	456	416	215	242	1,54	1,39	_				
Rata-Rata	368	349	181	198	1,27	1,16					

Hasil analisis berdasarkan Tabel 5 kinerja parkir pasar B pada sepeda motor menunjukkan nilai ratarata kendaraan masuk sebesar 368 unit dan kendaraan keluar sebesar 349 unit dengan nilai rata-rata indeks parkir (IP = 1,16 > 1) yang mengindikasikan bahwa kapasitas parkir tidak normal. Hasil ini menunjukkan bahwa area parkir pasar B memerlukan kapasitas parkir untuk menampung kendaraan sebesar 198 unit/hari dengan luas lahan sebesar 297 m². Sementara itu, kapasitas parkir saat ini hanya mampu menampung 140 kendaraan dengan luas lahan 210 m². Maka, dibutuhkan penambahan luas parkir sebesar 87 m² agar memenuhi Satuan Ruang Parkir (SRP).

Hasil analisis berdasarkan Tabel 6 kinerja parkir pasar C pada sepeda motor menunjukkan nilai ratarata kendaraan masuk paling tinggi sebesar 394 dan kendaraan keluar sebesar 363 unit. Selain itu, nilai ratarata indeks parkir (IP = 1,07 > 1) menunjukkan bahwa kapasitas parkir tidak normal. Maka hasil analisis menunjukkan bahwa parkir pasar C pada sepeda motor memerlukan kapasitas parkir untuk menampung kendaraan sebesar 141 unit/hari dengan luas lahan sebesar 212 m². Sementara itu, kapasitas parkir saat ini hanya mampu menampung 108 kendaraan dengan luas lahan 162 m². Maka, dibutuhkan penambahan luas parkir sebesar 50 m² agar memenuhi Satuan Ruang Parkir (SRP).

Azahar, Hidayah, Hadi, Hajar, Sakti/ Jurnal Pembangunan Wilayah dan Kota, Vol. 21, No. 3, 2025, 416-432 DOI: 10.14710/pwk.v21i3.69757

Tabel 6. Kinerja Parkir Pasar C - Sepeda Motor


Hari	Total Ke	Total Kendaraan		Volume	Turn	Indeks	Kapasitas	Kebutuhan
	Masuk	Keluar	Tertinggi	Tertinggi	Over	Parkir	Kapasitas	Parkir
Senin	400	386	105	121	0.96	0,80		
Selasa	397	361	107	121	1.03	0,85		
Rabu	425	417	127	152	1.25	1,05		50 m²
Kamis	398	385	118	142	1.19	0,98	108	
Jumat	381	382	125	150	1.24	1,03	Kendaraan	
Sabtu	359	312	141	140	1.08	1,18		
Minggu	403	319	163	138	1.10	1,32	_	
Rata-Rata	394	363	130	141	1.12	1,07		

Sedangkan hasil analisis berdasarkan Tabel 7 kinerja parkir pasar C pada mobil memiliki nilai rata-rata indeks parkir (IP = 1,20 > 1) menunjukkan kapasitas parkir tidak normal, sehingga parkir pasar C pada mobil memerlukan kapasitas parkir untuk menampung kendaraan sebesar 39 unit/hari dengan luas lahan sebesar 488 m². Sementara itu, kapasitas parkir saat ini hanya mampu menampung 32 kendaraan dengan luas lahan 162 m². Maka, dibutuhkan penambahan luas parkir sebesar 88 m² agar memenuhi Satuan Ruang Parkir (SRP).

Tabel 7. Kineria Parkir Pasar C – Mobil

	rabel /: Kinerja i arkii i asar e Mobii										
Hari	Total Kendaraan		Akumulasi	Akumulasi Volume Turn Indeks		Kapasitas	Kebutuhan				
пан	Masuk	Keluar	Tertinggi	Tertinggi	Over	Parkir	Kapasitas	Parkir			
Senin	13	12	37	37	1,10	1,10		88 m²			
Selasa	10	11	39	40	1,19	1,16					
Rabu	8	11	38	37	1,15	1,15					
Kamis	10	14	43	43	1,31	1,28	32				
Jumat	11	8	48	43	1,32	1,40	Kendaraan	00111			
Sabtu	19	21	36	35	1,00	1,02					
Minggu	35	26	45	38	1,14	1,27					
Rata-Rata	15	15	41	39	1,17	1,20					

Gambar 4a menampilkan volume parkir sepeda motor dan volume parkir mobil. Hasil analisis menunjukkan bahwa volume parkir sepeda motor memiliki nilai yang lebih tinggi dibandingkan volume parkir mobil. Temuan ini mengindikasikan bahwa pengunjung Pasar Kolombo mayoritas menggunakan sepeda motor yang mengakibatkan aktivitas penggunaan area parkir didominasi oleh sepeda motor. Sedangkan pada Gambar 4b menampilkan akumulasi parkir sepeda motor dan akumulasi parkir mobil. Hasil analisis menunjukkan adanya peningkatan signifikan dari penggunaan Parkir B dan C. Namun, akumulasi parkir mobil menunjukkan pola yang lebih fluktuatif pada setiap harinya, tetapi skalanya jauh lebih kecil dibandingkan sepeda motor. Jika ditinjau dari Indeks parkir (IP) secara keseluruhan, Gambar 4c menunjukkan bahwa IP parkir sepeda motor memiliki nilai yang lebih tinggi dibandingkan IP parkir mobil. Hasil ini menunjukkan bahwa area parkir Pasar A, B dan C tidak mampu menampung sepeda motor, sedangkan area parkir bahu jalan A relatif stabil dengan sedikit peningkatan pada hari Minggu, namun pada area parkir Pasar B pada mobil memiliki nilai IP tinggi yang mengindikasikan bahwa area parkir tersebut tidak mampu menampung mobil setiap hari.

Gambar 4. Perbandingan Parkir Sepeda Motor dan Mobil: a) Volume Parkir; b) Akumulasi Parkir; c) Indeks Parkir

Tabel 8. Kebutuhan Parkir Pasar Kolombo

Jenis Parkir	Penambahan Luas Parkir Mobil	Penambahan Luas Parkir Sepeda Motor	Luas Lahan Parkir
Parkir Pasar A	-	99 m²	480 m²
Parkir Pasar B	-	87 m²	377 m²
Parkir Pasar C	88 m ²	50 m²	810 m ²

Pada Tabel 8, kebutuhan parkir di tiga lokasi menunjukkan variasi dalam luas lahan yang berbeda. Parkir Pasar A memerlukan penambahan luas parkir 99 m² untuk sepeda motor, dengan total luas lahan mencapai 480 m². Parkir Pasar B membutuhkan penambahan sebesar 87 m² untuk sepeda motor. Sementara itu, Parkir Pasar C membutuhkan penambahan luas parkir untuk mobil sebesar 88 m², dan sepeda motor sebesar 50 m². Perbedaan ini mengindikasikan kapasitas dan fokus fungsi yang bervariasi di setiap lokasi parkir, mencerminkan strategi alokasi lahan yang disesuaikan dengan kebutuhan pengguna.

3.2. Analisis Kinerja Lalu Lintas Perkotaan

Data primer diperoleh berdasarkan informasi yang dikumpulkan secara langsung melalui pengamatan di lokasi penelitian dengan panjang jalan mencapai 300 meter. Pengumpulan data mencakup geometri jalan, fasilitas jalan, volume lalu lintas, hambatan samping, serta kecepatan tempuh rata-rata kendaraan. Tabel 9 menunjukkan informasi data geometri dan fasilitas jalan di kawasan Pasar Kolombo Yogyakarta.

Tabel 9. Data Geometri dan Fasilitas Jalan

Tuber 9	rabel 3. Bata deometri dan rasintas salam						
Data Geometri	Keterangan						
Nama jalan	Jalan Kaliurang Km 7,0-7,3 di kawasan Pasar Kolombo						
Tipe jalan	Jalan Arteri dengan tipe jalan 2 lajur tak terbagi (2/2 UD)						
Lebar jalan	12 meter dengan kondisi medan lurus dan datar						
Rambu lalu lintas	Tidak ada						
Tipe lingkungan	Daerah pasar dan pertokoan						
Jumlah Penduduk Sleman 2024	1.168.471 Jiwa						

Analisis kinerja jalan di kawasan Pasar Kolombo bertujuan untuk memahami dampak aktivitas pasar terhadap lalu lintas dan kondisi jalan. Dengan panjang jalan mencapai 300 meter, area ini sering mengalami peningkatan volume lalu lintas, terutama pada aktivitas pasar. Aktivitas perdagangan yang padat menyebabkan kemacetan dan hambatan samping yang signifikan.

Tabel 10. Arus Lalu Lintas Kawasan Pasar Kolombo

	Arah		Jumlah Ke	ndaraan			- Total
Hari	Kendaraan	Sepeda	Mobil	Mobil	Bus	Total	Keseluruhan
	Rendaraan	Motor	Penumpang	Barang	bus	TOtal	Neselul ullali
Senin	Selatan	4.925	1012	48	18	6.003	9.584
Seriii	Utara	2.752	779	30	20	3.581	9.504
Selasa	Selatan	5.155	1056	35	15	6.261	10.124
Sciasa	Utara	3.053	766	30	14	3.863	10.124
Rabu	Selatan	5.718	1020	48	12	6.798	11 / [2
Kabu	Utara	3.876	718	48	13	4.655	11.453
Kamis	Selatan	5.551	961	55	17	6.584	10.576
Namis	Utara	3.242	702	30	18	3.992	10.5/0
Jumat	Selatan	5.612	1038	40	15	6.705	10.794
Juliac	Utara	3.274	756	40	19	4.089	10.794
Sabtu	Selatan	2.319	715	45	27	3.106	F 470
Sabtu	Utara	1.810	496	38	29	2.373	5.479
Minggu	Selatan	2.578	722	44	27	3.371	6.120
wiiiiggu	Utara	2.079	593	45	32	2.749	0.120
Total K	eseluruhan	51.944	11.334	576	276		64.130

Hasil pengamatan pada Tabel 10 kinerja lalu lintas selama 2 jam 30 menit di Pasar Kolombo menunjukkan total 64.130 kendaraan yang melintas dalam waktu 7 hari. Pada hari senin, jumlah kendaraan mencapai 9.584 kendaraan. Hari selasa mencapai 10.124 kendaraan dan hari rabu mencapai 11.453 kendaraan.

Hari kamis dan Jumat total masing-masing 10.576 dan 10.794 kendaraan, dan akhir pekan mengalami penurunan, dengan total 5.479 kendaraan pada hari sabtu dan 6.120 kendaraan pada hari Minggu.

Perhitungan kapasitas jalan berdasarkan tipe jalan tak terbagi 2/2-TT yang dihitung secara terpisah berdasarkan arah dan perlajur dengan persamaan 9. Berdasarkan Pedoman Kapasitas Jalan Indonesia (Direktorat Jendral Bina Marga, 2023), kapasitas dasar (C_0) yang digunakan untuk tipe jalan 2/2-TT adalah 2.800 SMP/jam untuk dua arah. Faktor koreksi kapasitas akibat perbedaan lebar lajur/jalur (FC_{\square}) yang diterapkan adalah 1,34, sesuai dengan kondisi jalan 2/2-TT dengan LJE2 arah sebesar 11 meter.

Selanjutnya, faktor koreksi hambatan samping (FC_{HS}) ditetapkan berdasarkan hasil analisis pada Tabel 11 yang menunjukkan hambatan samping di Pasar Kolombo masuk kategori Tinggi, maka nilai faktor koreksi hambatan samping sebesar 0,90 pada jalan dengan bahu tipe 2/2-TT. Selain itu, faktor koreksi kapasitas akibat pembagian arah lalu lintas (FC_{PA}) yang digunakan adalah 0,88, berdasarkan rasio 70%-30%. Faktor koreksi ukuran kota (FC_{UK}), nilai yang digunakan adalah 1, mengacu pada kategori kota besar dengan jumlah penduduk berkisar antara 1 hingga 3 juta jiwa. Hasil analisis kapasitas jalan perkotaan yaitu 2.972 SMP/jam.

Tabel 11. Hambatan Samping

					<u> </u>				
Tipe Hambatan Samping	Faktor	ktor Frekuensi Bobot							Rata-Rata
пре напірасан запіріні	Bobot	Senin	Selasa	Rabu	Kamis	Jumat	Sabtu	Minggu	Rala-Rala
Pejalan kaki	0,5	59	60	55	67	64	56	55	59
Kendaraan berhenti	1,0	15	13	14	10	16	10	12	13
Kendaraan masuk + keluar	0,7	576	753	729	646	684	488	612	641
Kendaraan lambat	0,4	50	48	48	47	46	41	43	46
Total		700	874	846	770	810	595	722	760
Keterangan	•	T	Т	T	T	Т	T	T	Т

Keterangan: T = Tinggi

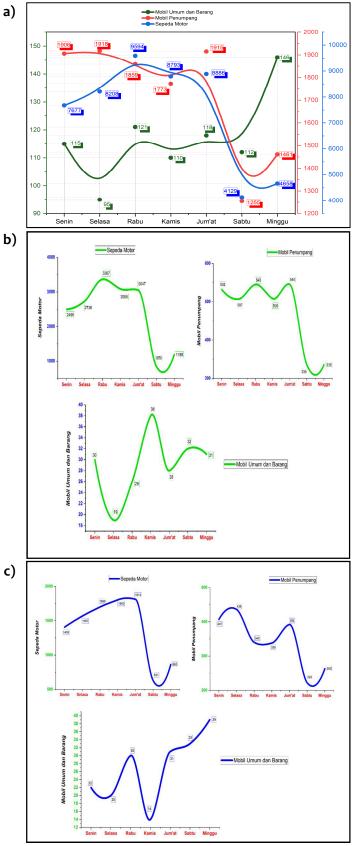
Perhitungan kinerja lalu lintas dapat dilakukan dengan menentukan derajat kejenuhan pada segmen jalan. Nilai derajat kejenuhan menunjukkan kualitas kinerja lalu lintas, apabila angka derajat mendekati angka nol maka kondisi lalu lintas dinyatakan lengang namun apabila mendekati angka 1 maka arus lalu lintas mendekati kapasitas. Berdasarkan Pedoman Kapasitas Jalan Indonesia, derajat jenuh dihitung berdasarkan Persamaan 11 dan kecepatan arus bebas dihitung dengan Persamaan 10.

Kecepatan arus bebas dasar (V_{BD}) yang digunakan adalah nilai rata-rata semua kendaraan yaitu 42 km/jam. Sedangkan pada koreksi kecepatan arus bebas akibat lebar jalur (V_{BL}) yang digunakan adalah jalan tak terbagi 2/2-TT yaitu 7 pada nilai L_{JE} = 11. Nilai korelasi kecepatan arus bebas akibat hambatan samping (FV_{BHS}) yang digunakan adalah 0.90 dengan tipe jalan 2/2-TT dan L_{BE} = 1,5 meter serta KHS Tinggi. Selanjutnya faktor korelasi akibat ukuran kota FV_{BUK} adalah 1 dengan jumlah penduduk 1 sampai 3 juta jiwa. Hasil perhitungan menunjukkan nilai kecepatan arus bebas sebesar 44 km/jam.

Tabel 12. Jumlah Kendaraan Perjam dan Kondisi Lalu Lintas Arah Selatan

			-)				
	To	otal Kendaraan I	Perjam		Kond	isi Lalu L	intas
Hari	Sepeda	Mobil	Mobil Umum dan	MC	LV	HV	Hasil
Пан	Motor	Penumpang	Barang	(0.25)	(1)	(1.2)	пазн
Senin	2496	532	30	624	532	36	1.192
Selasa	2736	507	19	684	507	23	1.214
Rabu	3367	545	26	842	545	31	1.418
Kamis	3086	508	38	772	508	46	1.325
Jumat	3047	545	28	762	545	34	1.340
Sabtu	850	335	32	213	335	38	586
Minggu	1188	335	31	297	335	37	669
Total	16.770	3.307	204	4.193	3.307	245	7.744

Berdasarkan Tabel 12, kondisi lalu lintas pada arah selatan menunjukkan distribusi kendaraan aktivitas harian. Pada arah selatan, jumlah total kendaraan per jam tertinggi tercatat pada hari Rabu, yaitu sebanyak 3.367 sepeda motor, 545 mobil penumpang, dan 26 mobil umum dan barang, dengan total skor kondisi lalu lintas (MC, LV, HV) mencapai 1.418. Sebaliknya, jumlah kendaraan terendah terjadi pada hari Sabtu, dengan total skor 586, yang menunjukkan aktivitas lalu lintas menurun signifikan pada akhir pekan.


Tabel 13. Jumlah Kendaraan Perjam dan Kondisi Lalu Lintas Arah Utara

Total Kendaraan Perjam				Kondisi Lalu Lintas			
Hari	Sepeda	Mobil	Mobil Umum	MC	LV	HV	Hasil
	Motor	Penumpang	dan Barang	(0.25)	(1)	(1.2)	
Senin	1406	407	22	352	407	26	785
Selasa	1567	436	20	392	436	24	852
Rabu	1699	340	30	425	340	36	801
Kamis	1803	338	14	451	338	17	806
Jumat	1813	392	31	453	392	37	882
Sabtu	631	222	33	158	222	40	419
Minggu	863	263	39	216	263	47	526
Total	9.782	2.398	189	2.446	2.398	227	5.070

Berdasarkan Tabel 13 pada arah utara menunjukkan pola lalu lintas dengan jumlah kendaraan per jam yang lebih rendah dibandingkan dengan arah selatan. Hari Jumat memiliki jumlah kendaraan tertinggi, dengan total skor kondisi lalu lintas sebesar 882, sedangkan hari Sabtu memiliki jumlah kendaraan terendah, dengan total skor 419. Secara keseluruhan, total kendaraan per jam pada arah utara mencapai 9.782 sepeda motor, 2.398 mobil penumpang, dan 189 mobil umum dan barang, dengan total skor kondisi lalu lintas 5.070.

Selanjutnya, dilakukan analisis arus lalu lintas berdasarkan jenis kendaraan yang melintasi kawasan Pasar Kolombo. Analisis ini divisualisasikan pada Gambar 5a yang menunjukkan bahwa sepeda motor mendominasi volume lalu lintas dengan peningkatan signifikan pada hari senin sampai hari Jumat dan mengalami penurunan signifikan pada hari Sabtu dan Minggu. Mobil penumpang menunjukkan pola yang relatif stabil dari hari Senin sampai hari Jumat, namun mengalami penurunan pada hari Sabtu dan Minggu. Sementara itu, mobil umum dan barang memiliki volume arus paling rendah, tetapi mengalami peningkatan pada hari Sabtu dan Minggu, yang menandakan adanya peningkatan aktivitas distribusi dan pengiriman barang. Secara keseluruhan, pola ini menunjukkan bahwa arus lalu lintas di kawasan tersebut didominasi oleh sepeda motor pada hari kerja, sedangkan mobil umum dan barang berperan lebih besar pada akhir pekan seiring dengan perubahan pola aktivitas masyarakat.

Sementara itu, hasil analisis pada Gambar 5b dan 5c menunjukkan bahwa arus lalu lintas arah selatan di kawasan Pasar Kolombo meningkat pada pertengahan minggu dan menurun menjelang akhir minggu. Sebaliknya, arah utara menunjukkan peningkatan arus pada awal hingga pertengahan pekan untuk sepeda motor dan mobil penumpang, serta kenaikan signifikan mobil umum dan barang pada akhir pekan. Hasil ini mengindikasikan bahwa arah selatan didominasi arus masuk ke pasar, sedangkan arah utara merepresentasikan arus keluar kendaraan terutama saat akhir pekan.

Gambar 5. Kondisi Arus Lalu Lintas Kendaraan: a) Jenis Kendaraan; b) Arah Selatan; c) Arah Utara 428

Azahar, Hidayah, Hadi, Hajar, Sakti/ Jurnal Pembangunan Wilayah dan Kota, Vol. 21, No. 3, 2025, 416-432 DOI: 10.14710/pwk.v21i3.69757

Tabel 14. Derajat Jenuh, Kecepatan Tempuh, dan Waktu Tempuh Arah Selatan

-	- ,				•	
Arah	Hari	Arus Lalu Lintas (SMP/jam)	Derajat Kejenuhan	Kecepatan Tempuh (Km/jam)	Panjang Segmen (Km)	Waktu Tempuh (Jam)
Selatan	Senin	1192	0,40	23	0,3	0,013
	Selasa	1214	0,41	23	0,3	0,013
	Rabu	1418	0,48	23	0,3	0,013
	Kamis	1325	0,45	23	0,3	0,013
	Jumat	1340	0,45	23	0,3	0,013
	Sabtu	586	0,20	28	0,3	0,011
	Minggu	669	0,23	28	0,3	0,011

Tabel 14 menunjukkan perbandingan derajat kejenuhan, kecepatan tempuh, dan waktu tempuh untuk lalu lintas arah selatan dan utara berdasarkan data arus lalu lintas per hari. Pada arah selatan, derajat kejenuhan tertinggi tercatat pada hari Rabu, dengan nilai 0,48, yang mencerminkan tingkat utilisasi jalan yang mendekati setengah dari kapasitas maksimum. Sebaliknya, derajat kejenuhan terendah terjadi pada hari Sabtu, dengan nilai 0,20. Kecepatan tempuh pada arah selatan relatif stabil sebesar 23 km/jam pada hari kerja (Senin hingga Jumat), sementara pada akhir pekan (Sabtu dan Minggu), meningkat menjadi 28 km/jam, mengindikasikan penurunan tingkat kepadatan lalu lintas. Waktu tempuh pada segmen sepanjang 0,3 km tetap konstan pada 0,013 jam (46,8 detik) selama hari kerja, dan sedikit lebih cepat pada akhir pekan sebesar 0,011 jam (39,6 detik).

Tabel 15. Derajat Jenuh, Kecepatan Tempuh, dan Waktu Tempuh Arah Utara

raber 150 berajae seriari, recepatan rempan, dan rrakta rempans adir						
Arah	Hari	Arus Lalu Lintas (SMP/jam)	Derajat Kejenuhan	Kecepatan	Panjang	Waktu
				Tempuh	Segmen	Tempuh
				(Km/jam)	(Km)	(Jam)
Utara	Senin	785	0,26	27	0,3	0,0111
	Selasa	852	0,29	27	0,3	0,0111
	Rabu	801	0,27	27	0,3	0,0111
	Kamis	806	0,27	27	0,3	0,0111
	Jumat	882	0,30	27	0,3	0,0111
	Sabtu	419	0,14	28	0,3	0,0107
	Minggu	526	0,18	28	0,3	0,0107

Pada arah utara, derajat kejenuhan lebih rendah dibandingkan arah selatan, dengan nilai tertinggi 0,30 pada hari Jumat dan terendah 0,14 pada hari Sabtu. Kecepatan tempuh relatif stabil sebesar 27 km/jam pada hari kerja, dan meningkat menjadi 28 km/jam pada akhir pekan. Waktu tempuh pada segmen sepanjang 0,3 km berada pada kisaran 0,0111 jam (40 detik) selama hari kerja dan sedikit lebih cepat menjadi 0,0107 jam (38,52 detik) pada akhir pekan. Perbandingan kedua arah menunjukkan bahwa lalu lintas arah selatan memiliki tingkat kejenuhan yang lebih tinggi, terutama pada hari kerja, dibandingkan dengan arah utara. Hal ini mengindikasikan adanya intensitas aktivitas yang lebih besar di arah selatan, yang dapat berimplikasi pada kebutuhan pengelolaan lalu lintas yang lebih intensif di jalur tersebut. Meskipun demikian, kecepatan dan waktu tempuh pada kedua arah menunjukkan stabilitas yang baik, yang mencerminkan kelancaran lalu lintas dalam konteks segmen jalan yang dianalisis. Temuan ini relevan sebagai dasar untuk perencanaan kapasitas jalan dan strategi manajemen lalu lintas yang berbasis data.

Analisis kinerja parkir di Pasar Kolombo menunjukkan perbedaan kinerja parkir pada tiga lokasi yang berbeda. Hasil analisis kinerja parkir pasar A menunjukkan bahwa kapasitas parkir sepeda motor tidak mencukupi, tetapi kapasitas parkir mobil di bahu jalan memadai. Hasil analisis parkir pasar B dan C pada sepeda motor dan mobil menunjukkan bahwa parkir tidak memadai. Selain itu, kinerja parkir menunjukkan tingkat utilitas dan rotasi kendaraan bervariasi antara lokasi parkir. Pada parkir pasar A, turnover kendaraan

motor rata-rata mencapai (1,26), yang menunjukkan frekuensi penggunaan ruang parkir yang cukup tinggi. Namun, kapasitas yang terbatas menyebabkan kebutuhan ruang yang melampaui luas lahan yang ada. Sebaliknya, turnover kendaraan mobil di parkir pasar bahu jalan A lebih rendah (0.76). Di parkir pasar B, turnover kendaraan motor lebih tinggi (rata-rata 1,27), yang menunjukkan bahwa lahan parkir ini memiliki rotasi kendaraan yang intensif. Kondisi ini menuntut penyesuaian kapasitas parkir untuk mengakomodasi kebutuhan pengguna pasar. Parkir pasar C menunjukkan turnover kendaraan motor rata-rata sebesar (1,12) dan mobil (1,17). Sementara itu, volume lalu lintas di kawasan Pasar Kolombo mencatat total 64.130 kendaraan selama satu minggu. Hari kerja menunjukkan volume kendaraan yang tinggi, dengan puncak pada hari Rabu (11.453 kendaraan), sementara akhir pekan mengalami penurunan volume yang signifikan, terutama pada hari Sabtu (5.479 kendaraan). Pola distribusi ini mengindikasikan peran signifikan aktivitas pasar dalam mendorong peningkatan lalu lintas harian, terutama pada arah selatan yang mendominasi arus kendaraan. Hasil penelitian menunjukkan bahwa pada arah selatan, D₁ tertinggi terjadi pada hari Rabu (0,48), mendekati separuh kapasitas maksimum. Sebaliknya, D_J terendah terjadi pada hari Sabtu (0,20), menunjukkan lalu lintas yang lebih lengang. Pada arah utara, D₁ cenderung lebih rendah dengan puncak pada hari Jumat (0,30) dan terendah pada hari Sabtu (0,14). Kecepatan tempuh rata-rata berada pada kisaran 23-28 km/jam. Pada hari kerja, kecepatan stabil di angka 23 km/jam untuk arah selatan dan 27 km/jam untuk arah utara. Akhir pekan menunjukkan peningkatan kecepatan menjadi 28 km/jam untuk kedua arah, mengindikasikan penurunan kepadatan lalu lintas.

Pada penelitian ini, hambatan samping dipengaruhi oleh aktivitas perdagangan yang membuat jumlah kendaraan keluar masuk yang tinggi, parkir liar, pejalan kaki dan kendaraan yang melambat ataupun berhenti di sekitar Pasar Kolombo, yang berdampak pada penurunan kapasitas jalan dan peningkatan tingkat kejenuhan (Prasetyan & Manullang, 2019; Priyono & Pradoto, 2021). Hambatan samping ini memengaruhi FCHS sebesar (0,90), yang secara langsung menurunkan kapasitas jalan. Strategi pengelolaan lalu lintas yang dapat diterapkan meliputi memanfaatkan teknologi (Kashinath et al., 2021; Razali et al., 2021), pengaturan zona parkir (Gunawan et al., 2024), penertiban parkir liar di bahu jalan (Liu et al., 2019; Mikusova et al., 2020), dan optimalisasi penggunaan ruang jalan (Kashyap et al., 2022). Arah selatan memiliki volume lalu lintas dan derajat kejenuhan yang lebih tinggi dibandingkan arah utara, terutama pada hari kerja. Hal ini mengindikasikan intensitas aktivitas yang lebih besar di arah selatan, kemungkinan besar disebabkan oleh aksesibilitas menuju pusat pasar. Total kendaraan per jam pada arah selatan mencapai 7.744, dibandingkan dengan 5.070 pada arah utara. Perbedaan ini menuntut penanganan yang lebih intensif pada jalur selatan untuk menjaga kelancaran arus lalu lintas.

4. KESIMPULAN

Hasil penelitian menunjukkan bahwa kapasitas parkir yang tersedia tidak memadai untuk menampung tingginya volume kendaraan, terutama pada jam puncak aktivitas pasar. Akibatnya, terjadinya parkir di badan jalan yang berdampak negatif pada efisiensi penggunaan jalan dan menjadi salah satu faktor utama yang memengaruhi kinerja lalu lintas di kawasan ini. Berdasarkan analisis, derajat kejenuhan tertinggi tercatat pada hari kerja, terutama pada arah selatan. Kondisi ini menunjukkan bahwa kapasitas jalan mendekati batas optimal, yang dapat menyebabkan penurunan kualitas pelayanan lalu lintas. Sebaliknya, pada akhir pekan derajat kejenuhan menurun yang menunjukkan penurunan aktivitas kendaraan akibat berkurangnya intensitas perdagangan. Selain itu, kecepatan tempuh kendaraan pada hari kerja relatif konstan pada arah selatan, sedangkan pada akhir pekan meningkat. Pola yang sama juga terlihat pada arah utara, meskipun tingkat kejenuhan dan hambatan sampingnya cenderung lebih rendah dibandingkan dengan arah selatan.

Hubungan antara kinerja parkir dan kinerja lalu lintas di kawasan Pasar Kolombo sangat erat. Hambatan samping yang disebabkan oleh kendaraan yang keluar masuk dan parkir di bahu jalan secara signifikan memengaruhi kapasitas jalan. Hambatan ini tidak hanya memperlambat arus kendaraan tetapi juga dapat meningkatkan risiko konflik antar pengguna jalan. Aktivitas parkir yang tidak teratur juga

berkontribusi terhadap penurunan kualitas kinerja lalu lintas, terutama pada jam-jam sibuk. Penurunan kecepatan kendaraan dan peningkatan waktu tempuh di kawasan ini menggambarkan dampak langsung dari pengelolaan parkir yang kurang optimal. Guna mengatasi permasalahan ini, diperlukan pengelolaan parkir dan manajemen lalu lintas. Penataan ulang area parkir di sekitar Pasar Kolombo seperti penambahan lahan parkir, dapat mengurangi hambatan samping dan meningkatkan kapasitas jalan. Di sisi lain, pengelolaan lalu lintas seperti pengoptimalan penggunaan rambu lalu lintas, dan pengawasan ketat terhadap aktivitas kendaraan di sekitar pasar menjadi langkah penting untuk memperbaiki kualitas pelayanan lalu lintas di kawasan ini. Hasil penelitian ini memberikan landasan yang kuat bagi para pemangku kebijakan untuk merancang strategi manajemen parkir dan lalu lintas yang terintegrasi, guna menciptakan kawasan pasar yang lebih tertata, nyaman, dan produktif bagi seluruh pengguna jalan.

5. UCAPAN TERIMA KASIH

Kami mengucapkan terima kasih yang sebesar-besarnya kepada semua pihak yang telah berkontribusi dalam penelitian ini mengenai kinerja parkir dan kinerja lalu lintas di kawasan Pasar Kolombo. Ucapan terima kasih kami sampaikan kepada tim peneliti dan akademisi yang telah memberikan bimbingan, dukungan, dan masukan berharga selama proses penelitian ini.

6. REFERENSI

- Abdillah, M., & Murtejo, T. (2019). Evaluasi pelayanan parkir di ruas jalan utama Suryakencana (studi kasus lahan parkir di Suryakencana Bogor). Astonjadro, 8(1), 17–23. DOI: https://doi.org/10.32832/astonjadro.v8i1.2286.
- Abubakar, I., Sinaga, E. A., Budiarso, Sinulingga, T., Agung, T. G., Sembiring, N., Djajasinga, N., Surty, B. H., Ginting, R., Yani, A., Nurida, C., & Sutiono, E. (2022). *Pedoman perencanaan dan pengoperasian fasilitas parkir*. Jakarta: Direktorat Jenderal Perhubungan Darat.
- Agustin, I. W., Adhianti, R. A. C., Fikriyah, Shakia, N. F., & Maulidiah, I. A. (2019). Exploring the role of transportation demand omotenashi (TDO) in the city Center Plaza of Batu. *IOP Conference Series: Earth and Environmental Science*, 328, 012024. DOI: https://doi.org/10.1088/1755-1315/328/1/012024.
- Assemi, B., Baker, D., & Paz, A. (2020). Searching for parking: An empirical investigation of the factors influencing cruise time. *Transport Policy*, 97, 186–196. DOI: https://doi.org/10.1016/j.tranpol.2020.07.020.
- Astika, N., & Arsyad, M. (2024). Analysis of the characteristics and requirement of parking areas at Kubah Datu Kalampayan Terminal Astambul District, South Kalimantan. Cerucuk, 7(3), 131-141. DOI: https://doi.org/10.20527/crc.v7i3.12759.
- Badan Pusat Statistik Provinsi D. I. Yogyakarta. (2024). Jumlah kendaraan bermotor menurut kabupaten/kota dan jenis kendaraan di D.I. Yogyakarta (unit), 2021–2023. Badan Pusat Statistik Provinsi D.I. Yogyakarta.
- Direktorat Jendral Bina Marga. (2023). Panduan kapasitas jalan Indonesia. Jakarta: Ditjen Bina Marga.
- Firmansyah, A. H., & Hartantyo, S. D. (2024). Studi evaluasi analisa kebutuhan lahan parkir pasar tradisional (studi kasus: Pasar desa Sugio). *Jurnal Talenta Sipil*, 7(1), 131–141. DOI: https://doi.org/10.33087/talentasipil.v7i1.385.
- Gunawan, W., Yovinus, & Fritiar, I. H. D. (2024). Parking governance in perspective public sphere. Case study of illegal parking in Bandung city. *Jurnal Academia Praja*, 7(2), 241–251. DOI: https://doi.org/https://doi.org/10.36859/jap.v7i2.2836.
- Huang, K., Liu, Z., Zhu, T., Kim, I., & An, K. (2019). Analysis of the acceptance of park-and-ride by users: A cumulative logistic regression approach. *Journal of Transport and Land Use*, 12(1), 637–647. DOI: https://doi.org/10.5198/jtlu.2019.1390.
- Irawati, S., Agustin, I. W., & Dwi Ari, I. R. (2022). Evaluasi kinerja parkir guna mendukung penerapan park and ride di stasiun Sidoarjo. *Jurnal Pengembangan Kota*, 10(1), 104–117. DOI: https://doi.org/10.14710/jpk.10.1.104-117.
- Isradi, M., Nareswari, N. D., Rifai, A. I., Mufhidin, A., & Prasetijo, J. (2022). Performance analysis of road section and unsignalized intersections in order to prevent traffic jams on Jl H. Djole Jl. Pasar Lama. ADRI International Journal of Civil Engineering, 6(1), 56–67. DOI: https://doi.org/10.29138/aijce.v6i1.21.
- Kariyana, I. M., Sumarda, G., Heka Ardana, P. D., & Alit Putra, I. G. A. (2023). Evaluasi rencana penataan parkir pasar Tulikup Gianyar. Jurnal Ilmiah MITSU (Media Informasi Teknik Sipil Universitas Wiraraja), 11(1), 49–62. DOI: https://doi.org/10.24929/ft.v11i1.2129.
- Kashinath, S. A., Mostafa, S. A., Mustapha, A., Mahdin, H., Lim, D., Mahmoud, M. A., Mohammed, M. A., Al-Rimy, B. A.

- S., Fudzee, M. F. M., & Yang, T. J. (2021). Review of data fusion methods for real-time and multi-sensor traffic flow analysis. *IEEE Access*, 9, 51258–51276. DOI: https://doi.org/10.1109/ACCESS.2021.3069770.
- Kashyap, A. A., Raviraj, S., Devarakonda, A., Nayak K, S. R., Santhosh, K. V., & Bhat, S. J. (2022). Traffic flow prediction models A review of deep learning techniques. *Cogent Engineering*, 9(1), 1–24. DOI: https://doi.org/10.1080/23311916.2021.2010510.
- Kondor, D., Santi, P., Le, D. T., Zhang, X., Millard-Ball, A., & Ratti, C. (2020). Addressing the "minimum parking" problem for on-demand mobility. Scientific Reports, 10(1), 1–10. DOI: https://doi.org/10.1038/s41598-020-71867-1.
- Liu, Q., Zhu, M., & Xiao, Z. (2019). Workplace parking provision and built environments: Improving context-specific parking standards towards sustainable transport. Sustainability, 11(4), 1–23. DOI: https://doi.org/10.3390/su11041142.
- Maulana, A., Sarjana, S., & Prastya, T. R. (2024). Traffic performance analysis in the traditional market area. E3S Web of Conferences, 576, 1–18. DOI: https://doi.org/10.1051/e3sconf/202457605003.
- Mikusova, M., Abdunazarov, J., Zukowska, J., & Jagelcak, J. (2020). Designing of parking spaces on parking taking into account the parameters of design vehicles. Computation, 8(3), 1–21. DOI: https://doi.org/10.3390/COMPUTATION8030071.
- Parmar, J., Das, P., Azad, F., Dave, S., & Kumar, R. (2020). Evaluation of parking characteristics: A case study of Delhi. Transportation Research Procedia, 48, 2744–2756. DOI: https://doi.org/10.1016/j.trpro.2020.08.242.
- Prasetyan, P., & Manullang, O. R. (2019). Perilaku pengunjung dalam memilih lokasi parkir Pada kawasan wisata malioboro di Yogyakarta. *Jurnal Pembangunan Wilayah* & Kota, 15(1), 47-57. DOI: https://doi.org/10.14710/pwk.v15i1.17716.
- Priambodo, S. ., Djaelani, M. ., Jahroni, J., Darmawan, D. & Sinambela, E. A. (2022). Evaluation of The Need for Motorcycle and Car Parking Spaces. *International Journal of Service Science, Management, Engineering, and Technology*, 1(1), 16–19.
- Priyono, A., & Pradoto, W. (2021). Analisis faktor-faktor pengembangan kualitas keamanan dan kenyamanan trotoar di kota Purwodadi (studi kasus: Koridor jalan R Suprapto). *Jurnal Pembangunan Wilayah Dan Kota*, 17(4), 360–371. DOI: https://doi.org/10.14710/pwk.v17i4.35234.
- Razali, N. A. M., Shamsaimon, N., Ishak, K. K., Ramli, S., Amran, M. F. M., & Sukardi, S. (2021). Gap, techniques and evaluation: Traffic flow prediction using machine learning and deep learning. *Journal of Big Data*, 8(1), 1–25. DOI: https://doi.org/10.1186/s40537-021-00542-7.
- Rozaq, D. A. (2019). Pengaruh moda transportasi terhadap perekonomian masyarakat secara spasial di Gunung Gambir, Kecamatan Sumberbaru, Kabupaten Jember. *Jurnal Geografi Gea*, 19(2), 88–92. DOI: https://doi.org/10.17509/gea.v19i2.17769.
- Sudarjat, H. (2022). Parking area for people with special needs: Standard design in Indonesia. *Indonesian Journal of Community and Special Needs Education*, 2(1), 53–58. DOI: https://doi.org/https://doi.org/10.17509/ijcsne.v2i1.43609.
- Zhang, F., Liu, W., Wang, X., & Yang, H. (2020). Parking sharing problem with spatially distributed parking supplies. Transportation Research Part C: Emerging Technologies, 117, 102676. DOI: https://doi.org/10.1016/j.trc.2020.102676.
- Zhang, W., & Wang, K. (2020). Parking futures: Shared automated vehicles and parking demand reduction trajectories in Atlanta. *Land Use Policy*, 91, 103963. DOI: https://doi.org/10.1016/j.landusepol.2019.04.024.
- Zhu, F., Wu, X., & Peng, W. (2022). Road transportation and economic growth in China: Granger causality analysis based on provincial panel data. *Transportation Letters*, 14(7), 710–720. DOI: https://doi.org/10.1080/19427867.2021.1930853.