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IMPLEMENTATION OF NEURAL PREDICTIVE CONTROL TO

DISTILLATION COLUMN

S. Anwari

Abstrak

This paper presents a neural predictive controller that is applied to distillation column. Distillation
columns represent complex multivariable systems, with fust and slow dynamics, significant
interactions and directionality. A phenomenological model (i.e. a model derived from fundamental
equations like mass and energy balances) of a distillation column is very complicated. For this
reason, classical linear controller, such as PID (Proportional, Integral, and Derivative) controller,
will provide robustness only over relatively small range operation because of complexity and
nonlinearity of the system. Neural predictive controller employed in this system to increase the range
operation without lack of robustness. In this work, a neural network is developed for modelling and
controlling a distillation column based on measured input-output data pairs. In distillation column, a
neural network is trained on the unknown parameters of the system. The resulting implementation of
the neural predictive controller is able to eliminate the most significant obstacles encountered in
conventional predictive control applications by facilitating the development of complex multivariable
models and providing a rapid, reliable solution to the control algorithm. Controller design and
implementation are illustrated for a plant frequently referred to in the literature. Results are given for
simulation experiments, which demonstrate the advantages of the neural based predictive controller

both at the transient region and at the steady state region to overcome any overshoots.

Keywords : neural predictive controller, distillation column; complex multivariable models

Introduction

Distillation is a process of separating two or
more miscible liquids by taking advantage of the boiling
point differences between the liquids. For methanol and
water, heat is added to the mixture of methanol and
water and eventually the most volatile component
(methanol) begins to vaporize. As the methanol
vaporizes it takes with it molecules of water.

The methanol-water vapor mixture is then
condensed and evaporated again, giving a higher mole
fraction of methanol in the vapor phase and a higher
mole fraction of water in the liquid phase. This process
of condensation and evaporation continues in stages-up
the column until the methanol rich vapor component is
condensed and collected as tops product (99.5%
recovery / 99.5% pure) and the IPA/Water rich liquid is
collected as bottoms product.

The distillation column has two inputs into the
system, the amount of amperage in the Reboiler and the
heat flux percent or (reflux ratio). The output would be
the temperature of the distillate and the temperature of
the Reboiler.

The demand for pure products of the chemical
industry coupled with the increasing attention for
greater efficiency, has necessitated continued research
in the techniques of distillation. The demand on
designers is not only to achieve the desired product
quality at the minimum cost, but also to provide a
constant purity of products even though there may be

some variation in feed composition and flow rate or
other disturbances. This is why it is important not to
consider a distillation column without its associated
control system.

Distillation column controller means product
quality control, operation rate and minimum raw
material usage. It is important to understand its
behavior and character obtain an efficiency, optimal
operation and quality product.

However, the most common design procedure
requires first an engineering analysis and choice of
the operating parameters (number and type of trays,
pressure, reflux ratio, column diameter) in order to
minimize the total annual cost of the column. Only
subsequently the choice of the controlled and
manipulated variables and the design of the control
system are accomplished. No implications of the
operating parameters on the control system
characteristics, such as interactions among loops and
plant ill conditioning, are generally considered by
project engineers.

In this paper a distillation case study is
presented in order to show which implications have
the choices of the two principle column design
parameters, i.e., the reflux ratio and the operating
pressure, on the interaction and ill conditioning of a
commonly used control structure for quality control.
In particular it will be shown that the common
engineering guidelines generally lead to a well-
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designed system also from a control point of view even
though this important goal does not appear explicitly in
the design procedure.

Effective distillation control is usually achieved
by means of model based predictive control (MBPC)
algorithms. Model based predictive control has
established itself in industry as an important form of
advanced control (Townsend and Irwin, 2001).

Model Based Predictive Control (MBPC) is a
strategy that finds a control trajectory over a future time
horizon based on a dynamic model of the process. In the
last decades, MBPC has become an important and a
distinctive part of control theory and has been widely
used in the area of industrial applications. All predictive
controllers are based on the fact that the process output
can be predicted over a time horizon by using the past
process inputs and outputs, if a suitable model of the
plant is known.

There are many algorithms proposed in literature
for implementing a predictive control, such as: Model
Algorithmic Control — MAC (Mehra and Rouhani,
1982), Extended Prediction Self - Adaptive Control —
EPSAC (De Keyser and Van Cauwenberghe, 1985),
Generalized Predictive Control — GPC (Clarke, et.al.,
1987) and Unified Predictive Control — UPC
(Soeterboek, 1992). These algorithms are very similar
because they are based on the same general ideas:
receding horizon principle, plant model as part of the
controller, prediction of the system’s output and
optimization of a cost function. The most important
differences consist in the used plant models and in the
chosen cost function.

The model used in the predictive controller plays
a decisive role for obtaining a successful control
strategy that can be applied to a real plant. The model
must be capable to accurately follow the process
dynamics and in the same time must be simple to
implement and fast in simulation. From these points of
view, for many plants, a neural network can be a good
model to use in a predictive controller. Multiple Layer
Perceptrons (MLP) and Radial-Basis-Functions (RBF)
are nonlinear neural networks that can be trained in a
supervised manner. Both MLP and RBF architectures
are universal approximators (Cybenko, 1989; Park and
Sandberg, 1991), fact which makes these types of neural
networks suitable for constructing nonlinear dynamic
models.

This paper analyzes a neural based predictive
controller, which eliminates the most significant
obstacles for nonlinear MBPC implementation by
developing a nonlinear model, designing a neural
predictor and providing a rapid, reliable solution for the
control  algorithm. The proposed method is
demonstrated by controlling the transient response of a
high purity distillation column.

Distillation Column Design

In this section a short summary of the
procedure usually followed by chemical engineers to
design a continuous distillation column is reported

(Pannocchia, 2001). Given a distillation problem, i.e.,

a feed mixture and some specifications on the purity

of the products, the engineer has to make a number of

decisions in order to accomplish this end, including
in the first stage the choice of the reflux ratio and of
the operating pressure. The reflux ratio is normally
defined as
_ flow returned as reflux _ L (1)
flow of top product D
Before choosing the effective reflux ratio two

limit conditions must be considered (Sinnott, 1996).

e Total reflux, i.e., the condition when all the
condensate is returned into the column as reflux:
no product is taken off and there is no feed. In
this condition the number of stages for a given
separation is the minimum.,

e Minimum reflux, i.e., the condition when the
reflux is reduced to a value that does not permit
to achieve the desired separation even with an
infinite number of stages.

Practical reflux ratios lie somewhere between the

minimum and total reflux and this place is found by

minimizing an overall annual cost function that
comprises two terms (Coulson and Richardson,

1993).

e Capital cost, principally determined by the
number and diameter of trays. For small values
of R, the capital cost decreases with R because
the number of trays rapidly decreases, while at
very high values of R it rises again because the
number of trays is close to the minimum value
but the column diameter increases.

e  Operating costs, principally determined by the
cost of the steam. The operating costs increase
with the reflux ratio since an increasing boil-up
rate is required.

There is no simple correlation between the optimal

reflux ratio and the separation characteristics, but

practical values generally lie between 1.1 and 1.5

times the minimum value.

Figure 1. Distillation column scheme
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Except for the case of heat-sensitive products,
the operating pressure must be chosen in such a way
that the dew point of the condensate is above the plant
cooling water temperature. The maximum cooling water
temperature is usually taken as 30 °c. and, therefore, the

dew point of the top product should not be below
4550 *c. When this corresponds to very high pressures,

the possibility of a refrigerating cycle should be

considered. Vacuum operations can be necessary in the

presence of heat-sensitive products. With these
considerations in mind, the operating pressure should be

as low as possible because a lower pressure provides a

higher relative volatility and, therefore, a smaller

number of stages.

The following assumptions have been accepted
to model the column
e Liquid and vapour mole rates are constant (in each

section above and below the feed stage).

e Liquid and vapour mixtures are in thermodynamic
equilibrium in each stage (i.e. they have the same
temperature and their compositions are related by
the Rault low).

e The hold up of each stage is assumed to be
constant.

e  The operating pressure is constant.

e The dynamics of the condenser level control and of
the bottom level control are negligible with respect
to the composition control dynamics, so that the
overall mass balances in these stages are assumed
to be always satisfied.

In Figure 1 (adapted from Pannocchia, 2001), a
general scheme of a distillation column with its
corresponding control loops is presented (Skogestad and
Postlethwaite, 1996). Two different levels of control
objectives can be identified.

1. Inventory control: safe fluid-dynamic operation of the
column is accomplished by the level control loops
(LC) on the top product vessel and on the bottom of
the column, and through the column pressure control
loop (PC).

2. Quality control: the desired product purity is obtained
by the product quality control loops (AC).

Here and in what follows, the case of the control
of both qualities through the manipulation of reflux and
boil-up flow rates (which is the most commonly used
control structure in practice) is considered. This
configuration is usually known as RV control structure.

Deshpande (1985) developed model of the binary
distillation column with two outputs and two control
variables. Deshpande used a 2x2 matrix to capture the
dynamics of the plant, while Rohmanuddin (1998) used
the following LTI model:

00747 " -0.0667 e™ 0.7
X, 120s+1 15.0s+1 R| |144s+1
= 308 -2 + -3 ¥ (2)
X, 0.1173 ¢ -0.1253¢ % 13e
11.7s+1 102s+1 120s+1

X, = the top product composition
X, = the bottom product composition

R = the reflux
v = the boil-up
X, = the feed composition

Predictive Control Based On Neural Models

The use of neural networks for nonlinear
process modeling and identification is justified by
their capacity to approximate the dynamics of
with  high
nonlinearities or dead time. In order to estimate the

nonlinear systems including those
nonlinear process, the neural network must be trained
until the optimal values of the weight vectors (i.e.
weights and biases in a vector form organization) are
found. In most applications, feedforward neural

networks are used, because the training algorithms

are less complicated.
When it comes to nonlinear models, the most
general one, which includes the largest class of

nonlinear processes, is doubtless the NARMAX
model (Chen and Billings, 1989; Narendra and
Parthasarathy, 1990) given by:
yIK] = f(y[k = 1],---, ylk - n],
ulk =d],-, u[k —d = m]) @)
k,m,n,d e N

describing the input-output transfer of a static
network with adequate topology (i.e. MLP or RBF),
d is the dead time, n and m are the orders of the
nonlinear system model. A neural-network-based
model corresponding to the NARMAX model may be

obtained by adjusting the weights of a multi-layer

perceptron architecture with adequately delayed
inputs (Chen, et.al, 1990). The neural NARMAX
model is briefly represented in Figure 2 (adapted
from Lazar and Pastravanu, 2002).

wik-d-1)

Neural Y5
 Network >

¥ik-l)

Figure 2. The neural NARMAX model

In this case, the neural network output will be

given by:

y[k]=f" (u[k —d = 1], y[k - 1]) @)
where fN denotes the input output transfer function
of the neural network which replaces the nonlinear
y[k —1] are
vectors which contain m respectively n delayed
elements of u and y starting from the time instant

function f in (3), and u[k-d-1],

k=1, e

&

where f:R"™™*" — R is a smooth nonlinear mapping
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ulk —d —1]=[ulk —d = 1],u[k —d - 2],
o uk—d—m]J ©)

ylk = 11= [ylk =1}, ylk = 2J, -, ylk = n]"

The neural NARMAX corresponds to a recurrent
neural network, because some of the network inputs are
past values of the network output.

If equation (4) is explicitly written for a two-
layer network, the following expression is obtained for
the network output at an arbitrary discrete-time instant:

N
y[k]:ijc'l(w;'u[k—d—l]+ (6)
j=l
wiylk-1]+b;)+b
where the following notations were used:
N — the number of neurons in the hidden layer;
W, - the weight for the output layer correspon-ding

to the j— th neuron from the hidden layer;
o} the activation function for the j—th neuron

from the hidden layer;
w! - the weight vector (row vector) for the j—th

neuron with respect to the inputs stored in
u[k —d -1];
wi - the weight vector (row vector) for the j—th

neuron with respect to the inputs stored in
ylk =175
b, - the bias for the j—th neuron from the hidden

layer;
b — the bias for the output layer.

Such sstructures with a single hidden layer are
considered satisfactory for most of the cases. In order to
obtain the model of a nonlinear process, the vector
u[k —d —1] defined by (5) is applied as input to the
process. The plant output is stored in a vector, which
will be used as the target vector for the neural network.
The target vector together with an input vector, which
contains the input values applied to the plant, are used
to train the neural network. The training procedure
consists in sequentially adjusting the -network weight
vectors, so that the mean squared error between the
desired response (the values from the target vector) and
the network output is minimized. Thus when a certain
stop criteria is satisfied, the training algorithm gives a
set of optimal values of the weight vectors.

The neural network with the constant values for
the weight vectors, obtained after the training,
represents the nonlinear model of the system. Before
this model is used to obtain the neural predictors,
validation of the neural based model is necessary. Two
validation methods are recommended:

e a what-if test, which is a time validation test
consisting in a comparison between the output of the
neural network and the output of the nonlinear system
when an input signal, different from the input signal
used to train the network is used. This test uses the

following error index to appreciate the quality of
the model (with N the number of samples):

PICALESAGIE

(7
©ITO, g, =

>y, kD’

where Y, is the process output and y is the

neural model output.
e a correlation test based on five correlation criteria.

If the neural network succeeds in all these tests, it is
accepted as a good mode! of the nonlinear system.

The predictors are necessary for the prediction
of future values of the plant output that are
considered in the predictive control strategy. The
implementation approach proposed in this paper uses
neural predictors obtained by appropriately shifting
the inputs of the neural based model. The predictive
control algorithm utilizes them in order to calculate
the future control signal. Neural predictors rely on the
neural-based model of the process (Liu, et.al:, 1998;
Tan and De Keyser, 1994). In order to obtain the
model of the nonlinear system, the same structure of
the neural network given by (6) is considered. A~
sequential algorithm based on the knowledge of
current values of u and y together with the neural-
network system model gives the i — step ahead neural
predictor. From equation (6), one can properly derive
the network output at the k+1 time instant:

y[k+l]=§N:chj(w}’u[k—d]+ (8)

)=
wiy[k]+b;)+b
where:
ufk —d] = [u[k —d],ulk —d - 1],
cuk=d+1-m][f ®)
yIK = [y[K], ylk =13, -, ylk + 1= n]'
This is the expression of the one-step-ahead
predictor, with respect to the notations introduced in
equation (6). In Figure 3 (adapted from Lazar and
Pastravanu, 2002), the construction of the neural
predictors is presented in a suggestive manner.

Extending equation (8) one step further ahead,
y[k +2] can be obtained and generally, the i- step

ahead predictor can be derived:
N
ylk+i]=Y wio (wiulk—d+i-11+ (10
j=!
wiylk +i-1]+b)+b
where:
ulk —d+i-1]=[ulk -d +i-1],
ulk —d +i-2],-,
ulk —d +i-m]]"
ylk+i-1]=[yk+i-1], y[k +i-2],

o ylk+i=n])]"

(1)
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Figure 3. The structure of the neural predictors

The neural predictors will be used by the
predictive control algorithm for calculating the future
control signal to be applied to the nonlinear system.

An intuitive graphical representation of the
predictive control strategy is given in Figure 4 (adapted
from Kloetzer and Pastravanu, 2004). At each time
moment kT, where T is the sample time and it will be
omitted in the following formulas for simplicity, the
future control policy u is computed in the idea that the
process output y will accurately follow the reference

trajectory r.

past contro] polic;
A P s ‘ future control palicy u
PN . g

g2 b . 1

setpoint w

G S dead e e
pail process output y *‘EI;:M? time i

pa*’l >k 5 M o ; 0 Pf(ﬂ;lf; 1. N2

present mornent k

Figure 4. MBPC strategy

In presenting the basics of the standard
predictive control, the following notations will be used:
N, - the control horizon; N, - the minimum

prediction horizon; N, — the prediction horizon; A -

the weight factor; r — the reference trajectory.

The objective of the predictive control strategy
using neural predictors is twofold: (i) to estimate the
future output of the plant and (ii) to minimize a cost
function based on the error between the predicted output
of the processes and the reference trajectory. The cost
function, which may be different from case to case, is
minimized in order to obtain the optimum control input
that is applied to the nonlinear plant. A possible form of
the cost function, used in most of the predictive control
algorithms, a quadratic form is utilized for the cost

function:
Nl

J:i;{r[kﬂ]—y[kﬂ]}— =2 %)

N,
2> {ulk +i-1]-ulk +i-2]}’
i=l
with additional requirements:
Au[k +i-1]=0, 1<N_ <i<N, (13)

where the following notations were used:
N, - the control horizon;

N, — the minimum prediction horizon;
N, — the prediction horizon;
i — the order of the predictor;
r — the reference trajectory;
A — weight factor;
A — the differentiation operator.

The command u may be subject to amplitude

constraints:
u,. <ulk+i]<u

min i=1,"',N2 (14)
The cost function is often used with the weight
factor A =0 and the minimum prediction horizon is

N, =1 A very important parameter in the predictive

max ?

control strategy is the control horizon N, which

specifies the instant time, since when the output of
the controller should be kept at a constant value. The
output sequence of the optimal controller is obtained
over the prediction horizon by minimizing the cost
function J with respect to the vector u, at each time

moment k. This can be achieved by setting:
o1
==l u=[ufk—d],ulk —d+1], (15)
o ulk=d+N, =1]
However, when proceeding further with the-
calculation of 9, a major inconvenience occurs. The

analytical approach to the optimisation problem
needs for the differentiation of the cost function and,
finally, leads to a nonlinear algebraic equation;
unfortunately this equation cannot be solved by any
analytic procedure. This is why a computational
method is preferred for the minimization of the cost
function, also complying with the typical
requirements of the real-time implementations
(guaranteed convergence, at least to a sub-optimal
solution, within a given time interval).

The computation of the optimal control signal
at the discrete time instant k can be achieved with
the following algorithm:

e the minimization procedure, performed at the
previous time instant gives the command vector:

u=[ulk —d~-1], ulk —d], (16)
S e s e |
At the first time instant, the control input vector
will contain some initial values provided by the
user. The number of values introduced must be
equal to the control horizon.

o the step ahead predictors of orders between N, and
N, are calculated by using the vectors
ulk-d+N, -1],y[k+N,-1] and u[k-d+
N, -1],y[k+ N, -1] respectively, as well as the
neural network based process model.

e the output control signal is obtained by minimizing
the cost function J with respect to the command
vector:
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u=[ulk —d], ulk —d +1],
coulk —d+ N, =1]]
The advantage of this nonlinear neural predictive

(Imn

controller consists in the implementation method that -

solves the key problems of the nonlinear MBPC. The
implementation is robust, easy to use and fulfills the
requirements imposed for the minimization algorithm.
Changes in the parameters of the neural predictive
controller (such as the prediction horizons, the control
horizon, as well as the necessary constraints) are
straightforward operations.

Considering the basic theoretical preliminaries of
MPBC presented in this section, a block diagram of a
standard predictive controller can be depicted as in
Figure 5 (adapted from Kloetzer and Pastravanu, 2004).

Past Inputs
and Outputs
of The Plant__

Reference
__ Step Ahead +'Tra1ectory
Predictors

Plant Model

Input Ot -
i ptimal
fulk]  Control
Signal -
Optimizer ;
f) ~Predicted Errors
Fu%gfiton Constraints

Figure 5. Basic structure of MBPC

Simulation Result And Discussion

The proposed neural based predictive control
algorithm was compared with the existing PID control
used in industry. In this application, it is important to
prevent overshoots which seriously affect the quality of
the control system.

The improvement offered over the PID control
scheme is purely a result of the ability of the Neural
Based Predictive Controller (NBPC) to handle process
dead time and interaction. The response to a set point
change in the top product composition from 0.96 to 0.98
and the bottom product composition from 0.04 to 0.02
is shown in Figure 6 and Figure 7, respectively. Shorter
settling time and less overshoot are obtained by the
NBPC.

0985 ---

088 -

0.975¢---

Top Product Compaosition

097

0.965

098

o 5 10 15 20 25" 30 -3 0 45 85
time (min)

Figure 6. Top Product Response to Set Changes
From 0.96 t0 0.98

Bottom Product Compasition

0015 f--vend

L A . T -
0 5 10 5 A0 25 30 3B 40 4 80
time (min)

Figure 7. Bottom Product Response to Set Changes
From 0.04 to 0.02

For the proposed controller, it could be easily
tuned to completely kill the overshoot with a
reduction about 20% of the seek time as shown in the
Figure 6 and Figure 7 compared to the PID
controller. It is clear from Figure 6 and Figure 7 that
the proposed controller completely meets the design
specifications mentioned above, while, it is not easy
to tune the PID controller for such a purpose.

Conclusions

A neural based predictive controller applied in
distillation column has been reported in this paper.
By applying the proposed controller we can get the
advantages of the neural based predictive controller
both at the transient region and at the steady state
region to overcome any overshoots.

Simulation results using a mathematical model
of distillation column show a much better
performance using the proposed controller compared
to that of the PID controller. Surprisingly, such an
enhanced response is accompanied by minimal or
even no-overshoot while; the control input limit has
not been reached.
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