2D Modelings of Fluid Flow in Catalytic Packed Bed Reactor ( Buchori)

2-D MATHEMATICAL AND NUMERICAL MODELINGS
OF FLUID FLOW INSIDE AND OUTSIDE PACKING IN

CATALYTIC PACKED BED REACTOR

L. Buchori, Y. Bindar*, D. Sasongko, IGBN Makertihartha

ABSTRACT

Generally, the momentum equation of fluid flow in porous media was solved by neglecting the
terms of diffusion and convection such as Ergun, Darcy, Brinkman and Forchheimer models.
Their models primarily applied for laminar flow. It is true that these models are limited to
conditions whether the models can be applied. Analytical solution for the model types above is
available only for simple one-dimensional cases. For two or three-dimensional problem,
numerical solution is the only solution. This work advances the flow model in porous media and
provides two-dimensional flow field solution in porous media, which includes the diffusion and
convection terms. The momentum lost due to flow and porous material interaction is modeled
using the available Brinkman-Forchheimer equation. The numerical method to be used is finite
volume method. This method is suitable for the characteristic of fluid flow in porous media
which is averaged by a volume base. The effect of the solid and fluid interaction in porous
media is the basic principle of the flow model in porous media. The Brinkman-Forchheimer
model considers the momentum loss term to be determined by a quadratic function of the
velocity component. The momentum and continuily equations are solved for two-dimensional
eylindrical coordinate. The results were validated with the experimental data. The porosity of
the porous media was treated to be radially oscillated. The results of velocity profile inside
packing show a good agreement in their trend with the Stephenson and Stewart experimental
data. The local superficial velocity attains its global maximum and minimum at distances near
0.201 and 0.57 particle diameter, d,. Velocity profile below packing was simulated. The results
were validated with Schwartz and Smith experimental data. The results also show an excellent

agreement with those experimental data.
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INTRODUCTION

Catalytic packed bed reactor is the type
reactor that’s widely used in many chemical
industries.  The reactor is packed with porous
catalyst particle. In catalytic packed bed reactor, the
fluid flow phenomena is very complex because the
fluid will pass porous media therefore fluid flow in
porous media must be really considered. The
mechanism of the flow in porous media involves
many problems vital to science and industry.
Notable examples are chemical catalytic reactors,
chemical adsorption column, filtration, chemical
membrane  separation, reservoir  engineering,
biomechanics,  geophysics,  hydraulics,  soil
mechanics and others.

The phenomena of flow distribution in
packed bed have been formulated through several

experiments. The measurement of flow inside
packing has been done by McGreavy, et. al, (1986)
and Stephenson and Stewart (1986). McGreavy, et.
al using Doppler-laser anemometer  while
Stephenson and Stewart using a marker tracing
method to observe the fluid motion with a video
camera in a transparent packed bed. It was found
that the local superficial velocity attained its global
maximum and minimum at distance near 0.2 d, and
0.5 d, from the wall. McGreavy obtained the
maximum velocity at 0.3 d, from the wall. The other
researchers such as Morales, et. al, (1951), Schwartz
and Smith (1953), Schertz and Bischoff (1969),
Marivoet, et. al, (1973) and Lerou and Froment
(1976) measured velocity profile at region above or
below packing at distance about one to three times
particle diameter. The flow distribution was given
by fluid velocity measurement which was carried out
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using hot-wire anemometer (HWA) or Laser-
Doppler-Anemometer (LDA). The experimental
results show the flow characteristics drastically
change when flow leaves packing. This indicates the
measurement of fluid velocity obtained exit packing
is not fully representing real flow information inside
the bed.

Mathematical modelings of fluid flow in
porous media have been widely developed. Among
of them are models that are developed by Darcy
(1856), Brinkman (1949), Forchheimer (1901) and
Ergun (1952). The models are applied specifically to
laminar flow. However, those models are limited to
one-dimensional flow and historically obtained
through  empirical approach. ~The  original
mathematical forms of the models absurd have not
yet describe the complete components of momentum
transfer. Some author extended directly one-
dimensional models above to two and three-
dimensional models. Two-dimensional numerical
investigation was developed by Stanek and Szekeley
(1974) and Papageorgiu and Froment (1995). The
momentum equations were simplified into two-
dimensional mathematical model that correlate the
pressure gradient and velocity component. The
unknown pressure field was handled by
transforming the equations into vorticity tansfer
equation. The solution was obtained numerically
using finite difference method. The mathematical
model solutions are limited up to two-dimensional
problem. However, the vorticity method used Stanek
and Szekely (1974) and Papageorgiu and Froment
(1995) is not so much reliable method due to its
limitation to two-dimensional laminar problem only.

The  numerical and  computational
developments have been established by Buchori, ef
al. (2000). The finite volume method is used to
obtain the solution. The effects of particle sizes and
Reynold number were reported in his previous
work. In this research, the mathematical model for
the momentum equation of flow in porous media is
developed. The Brinkman-Forchheimer equation is
adopted to model the effect of fluid and solid
interaction giving the momentum loss to the flow
field equation. Velocity profile inside and outside
packing reactor were simulated. The results were
validated with the experimental data. Beside the
mathematical model development, the more general
solution method of flow adopted for the preparation
to extend the solution method for three-dimensional
flows.

CHARACTERISTIC OF POROUS MEDIA

The characteristic of flow in porous media
depend on properties and structure of itself. There
are two important parameters to differentiate
between the porous and empty media. The ratio

between pore volume (fluid volume) and continuum
medium volume (solid and fluid volumes) quantifies
the space, which can be flown by the fluid. This
ratio is recognized as porosity, €. The other
parameter for the fluid flow in porous media is
tortuosity, t. Tortuosity is the ratio between the
global passage distance of the flow in a continuum
volume (macroscopic distance) and that total
passage distance of the flow in pore network straits
(microscopic distance) in a continuum volume.

The porosity is a quantitative that describes
the fraction of the voids medium. In experiments
have been done by researchers such as Roblee, ef. al
(1958), Benenati and Brosilow (1962), Ridgway and
Tarbuck (1966), Thadani and Peebles (1966), Pillai
(1977), Schuster and Vortmeyer (1980), porosity in
packed bed is not uniform. Porosity at reactor wall is
higher than bulk. The results show that maximum
value of porosity is attained at wall with € = 1. The
porosity will be decreased and will attain constant
value at fixed distance from wall. However, this
decreased not linier but oscillated along reactor
radius until distance 3 — 5 particle diameter.

The researchers made model to illustrate
porosity profile along radial direction (Martin, 1978;
Cohen and Metzner, 1981; Vortmeyer and Schuster,
1983; Mueller, 1990; Liu and Masliyah, 1999). This
research using Liu and Masliyah model (1999)
because their model is a better fit to the experimental
data for packed beds of uniform spheres and
cylinders. Their model is,
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The exponential decaying function is given by
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For packed bed of uniform spheres, the period of
oscillation is, p, = 0.94

MATHEMATICAL MODELING IN
CATALYTIC PACKED BED REACTOR

An ideal approach to establish the fluid
flow model inside porous media is to define the
momentum and continuity equations inside pore
volumes only and treat the solid media as zero
boundary for the flow field. However, this approach
is not practical and very tedious. The most common
approach is to assume the whole porous media (solid
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and pore volume) as a continuum medium. The flow
governing equations work on this continuum
medium without considering whether solid or fluid
medium. All quantities are defined on the bases of
volume average.

A local quantity @' is used to define a
volume average quantity ®. This called is REV
(Representative Elementary Volume) (Slattery, 1969;
Liu and Masliyah, 1999). The volume average of a
point quantity associated with the fluid quantities
(velocity, density, concentration or other) is

1 ¢
D=—[d do 3)
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So that, the continuity equation for porous media is
written in a control volume average, Av,
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That equation can be written,
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The general momentum equations of fluid
flow in porous media in a control volume v
constitute rate of increase of momentum, rate of
momentum gain by convection, rate of momentum
gain by viscous transfer (diffusion), pressure force,
gravitational force or external force, and rate of
momentum loss due to fluid and solid interaction in
porous media. The momentum equations in porous
media are averaged in a control volume as the
following
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The averaged volume viscous term, the
second term in the right hand side of Eq. (6), should
be very complex to be derived resulting a well
defined term. This term can be contributed also the
momentum loss due to the fluid and solid
interaction. Intuitively, the viscous term is defined
by the diffusion rate of momentum and the new term
for momentum loss due to the fluid and solid
interaction is added to Eq. (6), specific flow models
are resulted. The fluid and solid interaction term is
model by Brinkman-Forchheimer equation. At last,
specific flow model is obtained as the following
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NUMERICAL MODELING AND
COMPUTATIONAL METHOD

Momentum equations of fluid flow in
porous media were modeled in the past using
laminar Darcy, Brinkman, Forchheimer, Ergun,
modified Ergun flows. Those models neglect
diffusion and convection terms except Brinkman
model added intuitively the diffusion term only and
still neglect the convection term. As a consequence
the effect of convection term to flow distribution is
not observed

In this work research, the porous media
flow is modeled by including the convection and the
diffusion terms. Brinkman-Forchheimer model is
adopted to model the momentum loss due to fluid
and solid interaction which appears as an additional
term in the momentum equation as is shown in Eq.
(7). A specific mathematical modeling of fluid flows
in porous Equation, Eq. (7), improves conventional
models in term of the present of both convection and
diffusion terms. Furthermore, this model can be
developed to a numerical model.

A numerical modeling of fluid flow in the
porous media is developed from Eq. (7). The
momentum, Eq. (7) and continuity, Eq. (5), are
presented for steady state and two-dimensional
cylindrical coordinate. The flow is incompressible
and isothermal. The flow in porous media is limited
to Forchheimer flow. This results two-dimensional
continuity equation,
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and two dimensional momentum equations written
in the form of flux variables J, source term S and
pressure gradient
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Equations (9) to (12) are closure forms and
numerically solvable. Well known finite volume
method Patankar (1980) is used in to model
numerically Eq. (8) to (12). The computational
domain is defined as the duct geometry of the flow
to form a continuum volume. Subsequently, this
computational domain is discretized in finite control
volumes. Conservation laws must be valid at each
control volume and so the whole computational
domain. The discretization of momentum and
continuity equations forms a set of linear algebraic
equation. This set of linear algebraic equations is
solved iteratively using a line-by-line method
matrix solver. For each line, linear algebraic
equations are solved using tridiagonal matrix direct
solver, TDMA (Tridiagonal Matrix Algorithm).
Unknown pressure field is handled using a standard
SIMPLE procedure.

The source term, Eq. (12), is linearized in
the form of

(13)

The coefficient S, is kept always less than or equal
to zero. To meet with this criterion, this source is
linearized following
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ds

The symbol 9,,‘ is used to denote the previous-

iteration value of 8.

RESULTS AND DISCUSSION

The computational parameters were set to
be the same as experimental parameters of
Stephenson and Stewart (1986). The pipe diameter
D, particle diameter d,, particle Reynold number Re,
tube length L, bulk porosity €, are respectively 75.7
mm, 7.035 mm, 280, 1449 mm, 0.354.
Experimental measurement of axial velocity was
measured by averaging at distance 0.05 of pipe
radius R. The grid size in the computation was set
also to the length of 0.05 R. The porosity of the bed
follows the profile of Eq. (1).

The results of flow field velocity
computation in packed bed catalytic reactor are
compared to measured axial velocity profile given
by Stephenson and Stewart (1986), which used
optical measurement technique. Reactor
configuration in this research is shown in Fig. 1. The
axial velocity component profile is shown in Fig. 2
and the radial is presented by Fig. 3. The vector of
these velocity components is depicted in Fig. 4.

L, Empty Inlet
Iis Packed Bed
L, Empty Outlet

v

Figure 1. Reactor configuration
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Figure 2. Axial velocity profiles inside packed bed
reactor (L)
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Radial velocity profile inside packed bed
reactor (L;)

Figure 3.
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Figure 4. Profile of velocity along the inside packed
bed reactor (L,)

Those figures indicate that velocity profile
produce the trend of having global maximum and
minimum peaks at distance very close to the wall.
The predicted flow fields agree closely to measured
velocity from Stephenson and Stewart’s experiment.

In accordance with Staphenson and
Stewart, the first maximum and minimum peak
should occur at distance 0.2 d, and 0.5 d,, from the
wall. This value becomes a critical criterion in
comparing the predicted results using various
models and experimental results (Cheng and Yuairi,
1997). These computational results give the first
maximum peak at distance 0.201 d, and the first
minimum peak at 0.57 d,. This means that in term
of the quantity, these computational results are quite
accurate.

A quasi-analytical solution for one
dimensional at those experimental parameters above
was obtained by Cheng and Yuan (1997). Their
results indicate the second maximum peak to occur
at 1.0 d, from the wall. The second peak from the
present results occurs at distance 1.07 d,, that is
almost the same value as Cheng and Yuan result
above.

The comparison of present numerical
modeling results with experimental and quasi-
analytical results leads to some important findings.
The convection and the diffusion terms in the
mathematical modeling can be solved numerically
and no need to be excluded. The effect of these
terms to the flow field prediction exists especially to
complex flow configuration that can be solved one-
dimensional approach. It may be argued that these
terms can be neglected. This practice may be valid
for strong one-dimensional flow in porous media.
This numerical model is considered to be accurate.
Furthermore, the radial velocity profile can be
predicted in which its importance is very clear for

real flow, non one-dimensional flow. There are
various non-ideal problems of the flow in porous
media can be investigated using this numerical
model.

Furthermore, the computational program
is solved to investigate velocity distribution at region
below packing. The computational parameters were
set to be the same as experimental parameters of
Schwartz and Smith (1953). Schwartz and Smith
experiment is conducted by change reactor diameter
and particle packing. The reactor diameter used is 2,
3 and 4 in. The size particle packing is "4 and 3/8 in.
The form of particle packing is a uniform cylinder
equilateral. The fluid, tube length L, bulk porosity €,
are air, 23 in, 0.32 respectively. The results are
shown in Fig. 5, 6 and 7.
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Figure 5. Velocity profile at distance 5.1 cm below
packing (D=2 in, dp=1/4 in) (L3)
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Figure 6. Velocity profile at distance 5.1 cm below
packing (D=3 in, dp=1/4 in) (L)
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Figure 7. Velocity profile at distance 5.1 cm below
packing (D=4 in, dp=3/8 in) (L;)

At the first stage, the distributed fluid will
enters into packed bed. When the fluid leaves
packing, it will go through the empty region below
packing. Distribution of velocity will be different
from distribution of velocity in packing. Fig. 6-8
shows when the fluid goes through empty region
below packing, velocity profile does not oscillate as
velocity profile in the packing, but this oscillation
gradually loses and changes to become a cavity with
one maximum peak.

Figures 5 to 7 show the predicted velocity
profiles and compared to the measured ones below
packing at distance about 5.1 cm from packing. The
agreement between the prediction and the
experimental data is very impressive. The predicted
profiles oscillate weakly. Since Schwartz and Smith
(1953) took only five experimental points, the
presence of oscillation in measured velocity was not
captured.

CONCLUSION

A mathematical model of the fluid flow in
porous media as an improvement of the conventional
models has been developed. Two-dimensional
numerical model to this mathematical model was
established. The numerical modeling results agree
very closely to the existing literature experimental
data at various parameters. The introduction of the
Forchheimer equation to the momentum equation is
proven to be workable in the prediction of the flow
in porous media. Furthermore, these results are also
considered to be accurate in which the predicted
global velocity maximum and minimum occur at the
distance close the experimental data, 0.201 d, and
0.57 d,. The computational results also indicate a
good agreement with experimental data when it is
simulated at region below packing. Thus, the
convection and the diffusion terms in the
mathematical modeling can be solved numerically

and no need to be excluded. The established
numerical model offers the mean for the
investigation of the effects of various parameters.
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NOMENCLATURE
Pd = oscillation period
D = reactor diameter, m
d, = particle diameter, m
o = viscous resistance coefficient
B = inertia resistance coefficient
€b = bulk porosity
G = gravitation force, m/s’
r = exponential decaying function

= permeability, m™

= packing length, m

= source term

= pressure, kg/m.s’

= particle Reynold number

= reactor radius, m

= superficial velocity x-direction, m/s
= superficial velocity y-direction, m/s
= porosity

= fluid viscosity , kg/m.s

= fluid density, kg/m’

° B M By foaiee i
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-

pu; = mass flux, kg/mz.s

puy; = momentum flux, kg/m.s>
v = nabla, operator gradient
J = flux

Subscript: 0 = initial value
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