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THE EFFECT OF REYNOLDS NUMBER AT FLUID FLOW

IN POROUS MEDIA

Abstract

In packed bed catalytic reactor, the fluid flow phenomena are very complicated because of the fluid
and solid particles interaction to dissipate the energy. The governing equations need to be developed
to the forms of specific models. Flows modeling of. “fluid flow in porous media with the absence of the
convection and viscous terms have been considerably developed such as Darcy, Brinkman,
Forchheimer, Ergun, Liu, et al. and Liu and Masliyah models. These equations usually are called
shear factor model. Shear factor is determined by the flow regime, porous media characteristics and
fluid properties. It is true that these models are limited to conditions whether the models can be
applied. Analytical solution for the model types above is available only for simple one-dimensional
cases. For two or three-dimensional problem, numerical solution is the only solution. The present
work is aimed to develop a two-dimensional numerical modeling of flow in porous media by including
the convective and viscous terms. The momentum lost due to flow and porous material interaction is
modeled using the available Brinkman-Forchheimer and Liu and Masliyah equations. Numerical
method to be used is finite volume method. This method is suitable for the characteristic of fluid flow
in porous media which is averaged by a volume base. The effect of the solid and fluid interaction in
porous media is the basic principle of the flow model in porous media. The momentum and continuity
equations are solved for two-dimensional cylindrical coordinate. The results were validated with the
experimental data. The results show a good agreement in their trend between Brinkman-Forchheimer
equation with the Stephenson and Stewart (1986) and Liu and Masliyah equation with Kufner and
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Hoffiman (1990) experimental data.
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Introduction

Catalytic packed bed reactor is the type of
reactor that is widely used in many chemical
industries. In this reactor, flow maldistribution
problem occurs frequently in the operation.
Generally, the flow maldistribution is caused by
inherent reactor design and operation problems. At
present, the reactor is designed mostly using the
simplification method of flow in which the
complicated flow that may exist is assumed to
become simple and known flow characteristics, such
as resulting elementary reactor design procedures
either perfectly mixed or plug flow reactor design
concept. An improved reactor design method should
be observed. If the flow field is predicted as
realistically as to be, the flow maldistribution can be
minimized or avoided in the design step.

The phenomena of flow distribution in packed
bed have been formulated through several
experiments. The measurement of flow inside
packing has been done by McGreavy, et al., (1986)
and Stephenson and Stewart (1986). McGreavy, et. al
using Doppler-laser anemometer while Stephenson
and Stewart using a marker tracing method to observe

the fluid motion with a video camera in a transparent
packed bed. It was found that the local superficial
velocity attained its global maximum and minimum at
distance near 0.2 d, and 0.5 d,, from the wall. McGreavy
obtained the maximum velocity at 0.3 d, from the wall.
Mathematical and numerical modelings of fluid
flow in porous media have been widely developed.
Among of them are models that are developed by Darcy
(1856), Brinkman (1949), Forchheimer (1901) and Ergun
(1952). However, those models are limited to one-
dimensional flow and historically obtained through
empirical approach. The original mathematical forms of
the models absurd have not yet describe the complete
components of momentum transfer. Some author
extended directly one-dimensional models above to two
and three-dimensional models. Giese, et al. (1998) and
Liu and Masliyah (1999) have solved one-dimensional
problem by neglecting convection terms and using finite
difference  method. Two-dimensional — numerical
investigation was developed by Stanek and Szekeley
(1974) and Papageorgiu and Froment (1995). The
momentum equations were simplified into two-
dimensional mathematical model that correlate the
pressure gradient and velocity component. The unknown
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pressure field was handled by transforming the
equations into vorticity transfer equation. The
solution was obtained numerically using finite
difference method. However, their solution is not so
much reliable method due to its limitation to two-
dimensional laminar problem only. Its necessary to
develop mathematical and numerical models to obtain
a more realistic solution of fluid flow in porous
media. The numerical and computational
developments of fluid flow in porous media including
the continuity and momentum equations have been
established by Buchori, et al (2000) and Supardan, et
al (2000).

The purpose of this research is to improve the
continuity and momentum equation solution for two-
dimensional of fluid flow in porous media that
includes the diffusion and convection terms and to
investigate the effect of flow regime at fluid flow in
porous media. The Brinkman-Forchheimer and Liu
and Masliyah equations are adopted to model the
effect of fluid and solid interaction giving the
momentum loss to the flow field equation.

Characteristic of Porous Media

The characteristic of flow in porous media
depend on properties and structure of itself. There are
two important parameters to differentiate between the
porous and empty media. The ratio between pore
volume (fluid volume) and continuum medium
volume (solid and fluid volumes) quantifies the
space, which can be flown by the fluid. This ratio is
recognized as porosity, €. The other parameter for the
fluid flow in porous media is tortuosity, T. Tortuosity
is the ratio between the global passage distance of the
flow in a continuum volume (macroscopic distance)
and that total passage distance of the flow in pore
network straits (microscopic distance) in a continuum
volume. From several experiments, it is obtained that
a constant value of tortuosity does not depend on pore
structure. Haring and Greenkorn (1970) got a value of
T equal 2.25 whereas Fatt (1956a) got 1.

The porosity is a quantitative that describes
the fraction of the voids medium. In experiments have
been done by researchers such as Roblee, et al.
(1958), Benenati and Brosilow (1962), Ridgway and
Tarbuck (1966), Thadani and Peebles (1966), Pillai
(1977), Schuster and Vortmeyer (1980), porosity in
packed bed is not uniform. Porosity at reactor wall is
higher than bulk. The results show that maximum
value of porosity is attained at wall with € = 1. The
porosity will be decreased and will attain constant
value at fixed distance from wall. However, this
decreased not linier but oscillated along reactor radius
until distance 3 — 5 particle diameter.

The researchers made model to illustrate
porosity profile along radial direction (Martin, 1978;
Cohen and Metzner, 1981; Vortmeyer and Schuster,
1983; Mueller, 1990; Liu and Masliyah, 1999). This
research using Liu and Masliyah model (1999)

because their model is a better fit to the experimental data
for packed beds of uniform spheres and cylinders.
Their model is,
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The exponential decaying function is given by
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For packed bed of uniform spheres, the period of
oscillation is, p; =0.94

Flow Regime in Porous Media

Generally, flow regime is divided into two type,
laminar flow regime and turbulent flow regime. Laminar
flow regime is assumed to exist below Reynolds number
of 2000 (Re,<350) and turbulent flow regime above that
number (Re,>=350) (Blick, 1966). Liu, et al (1994)
divided laminar flow regime to two region who Darcy
flow regime region and Forchheimer flow regime region.

Darcy flow regime region is represented with
Darcy’s law. Darcy is the first man introduce one-
dimensional empirical model for fluid flow in porous
media with a simple linier relation between pressure
gradient and flow rate that has a constant permeability.
Darcy’s law is considered valid for flow through porous
media with viscous foece dominated inertia force. In
application, Darcy’s law lacks the flow diffusion effects.
Darcy’s law can be used to illustrate creeping flow in
packed bed for particle Reynold number not more than 10
(Nguyen and Balakotaiah, 1994).

At the Forchheimer flow regime region, Darcy’s
law cannot be used because as a result of high velocity
gas flow, Darcy’s law gradually loses its predictive
accuracy and ultimately becomes completely void. The
empirical equation usunally used for determining the
pressure gradient for high speed flow through a porous
medium is a velocity term squared that Forchheimer had
developed (Blick, 1966; Firozabadi and Katz, 1979).

Shear Factor Model

Shear factor model is one of the forms to be
introduced in momentum equation for covering the effect
of flow and solid interaction in porous media. Shear
factor can be determined experimentally or theoretically.
Shear factor is determined by the flow regime, porous
media characteristics and fluid properties. Ideally, one
would like to use heuristic arguments to derive an
expression for shear factor in terms of universal constants
and easily measurable properties of the porous material
and the flowing fluid. Some investigators focused their
research on shear factor of momentum equation. Various
shear factor models are shown in Table 1.
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Table 1. Various shear factor models

Shear Factor Model Equation
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Media

The fluid flow distribution in porous media
can be represented completely and realistic in
continuity and momentum equations. The momentum
and continuity equations in porous media should be
derived to cover the effect of solid porous media to
the fluid flow.

In porous media, usually the number of holes
or pores is sufficiently large that a volume average is
needed to calculate its pertinent properties. This
method is called REV (Representative Elementary
Volume) (Slattery, 1969; Liu and Masliyah, 1999).
The volume average of a point quantity associated

with the fluid quantities (velocity, density,
concentration or other) is
1 Y 4
®=—[d"dv 9
Av

Volume average quantities for fluid flow are usually
referred as superficial velocities. Consequently, the
superficial velocities are also spatially distributed.
Spatial distribution of superficial velocities provides
the information of fluid velocity. Other quantities,
such as fluid and solid properties are also presented as
volume average quantities.

The continuity equation for porous media is
written in a control volume average, Av , results

1 .0 1
Efg(ap)do +-ZA:[(pSi )du =0

That equation can be written,

(10)

At steady state condition and two-dimensional direction,
axial and radial position, Eq. (11) leads to

l—a— pu)+é%—§r—(rpv)= 0

g 0z

The general momentum equations of fluid flow in
porous media in a control volume v constitute rate of
increase of momentum, rate of momentum gain by
convection, rate of momentum gain by viscous transfer
(diffusion), pressure force, gravitational force or external
force, and rate of momentum loss due to fluid and solid
interaction in porous media. The momentum equations in
porous media are averaged in a control volume as the
following

1.5%¢ = 1 =
— [ —\epSi dvo+— || p9i3. |dv =
i 2 opoi o+ 115839, Jao

—-—Ispfdu+-——j ( IJ)

The averaged volume viscous term, the second term in
the right hand side of Eq. (13), should be very complex to
be derived resulting a well defined term. This term can be
contributed also the momentum loss due to the fluid and
solid interaction. Intuitively, the viscous term is defined
by the diffusion rate of momentum and the new term for
momentum loss due to the fluid and solid interaction is
added to Eq. (13), specific flow models are resulted. At
last, specific flow model is obtained as the following

(12)

13)

U—LISVPdU
Av
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Based on the volume average above, Liu and
Masliyah (1999) derived momentum equations of
flow in porous media to give more general equations
as follows:

0 pS, p9;8,;

aT*V'(Q—JJ=V-w[(vsi>+(vsj)T]

+V.(‘C€§-Vpsi)—‘t(Vp—pg)-i-TuFSi (15)
e

One cans overview the momentum equations above
as mathematical modeling equations for fluid flow in
porous media. The second term in the right hand side
of Eq. (15) was a postulated closure form as an extra
term for interaction flux within the fluid, which can
be simplified into a similar form to diffusion. The
first term in the right hand side of Eq. (15) is a pure
diffusion term. Both of these terms can be combined

to give a total diffusion term. The quantity K was

defined as a tensor of dispersion coefficients by Liu
and Masliyah (1999),

8. 00
§=dp’8i‘DT 0 10 (16)
0 01

Where d,, Dy and &, are particle diameter, transverse
dispersion coefficient and normalized longitudinal
dispersion factor.

The last term in the right hand side of Eq. (15)
represents the total flux from fluid to solid. Moreover,
the form used by these authors was a specific
proposed model for flux exchange between fluid and
solid. The factor F was termed as the shear factor and
considered to be a function of its local Reynolds
number. The shear factor in a momentum transfer
indicates the momentum loss due to a fluid and solid
interaction.

For the moment, Eq. (15) is the most
comprehensive momentum equation for fluid flow in
porous media. This equation will be used to form a
more specific mathematical model of fluid flow in
porous media which will be evaluated in this work.
Further simplification of Eq. (15) can lead to
conventional mathematical models of flow in porous
media, such as Darcy’s, Brinkmam’s, and
Forchheimer’s equations

Numerical Modeling and Computational Method
The momentum equations above can be
further developed to the forms of specific models.
Shear factor model is one of the forms to be
introduced in momentum equation for covering the

effect of fluid flow and solid interaction in porous media.

In this work research, the porous media flow is
modeled by including the convection and the diffusion
terms. Brinkman-Forchheimer and Liu and Masliyah
models are adopted to model the momentum loss due to
fluid and solid interaction which appears as ar additional
term in the momentum equation. A specific mathematical
modeling of fluid flows in porous Equation, Eq. (14,15),
improves conventional models in term of the present of
both convection and diffusion terms. Furthermore, this
model can be developed to a numerical model.

A numerical modeling of fluid flow in the porous
media is developed from Eq. (14). The momentum, Eq.
(14) and continuity, Eq. (12), are presented for steady
state, without gravitational force and two-dimensional
cylindrical coordinate (axial and radial directions). The
flow is incompressible and isothermal.

The continuity equation is written as

22 (pu)+ =222 wr)=0 a7
€ 0z eror

and two-dimensional momentum equations in axial and
radial directions are written as

- Axial direction:

10 10 0 ou
L= 2 (%)
(18)

19

Equations (18) and (19) can be simplified in flux
variables J, source term S and pressure gradient as
follows:

Juz = lpuu - (u@j (20a)
€ oz

Jur = lpvu = (u@j (20b)
€ or

Iz = -l-puv—(p.@j (21a)
€ oz

Jor =lpvv—(p-a—v—j (21b)
€ or

S, =Fu (22a)

S, =Fv (22b)

Furthermore, Eq. (18) becomes

2(Juz)+li(er)=—8—P+Su (23)

oz r or oz

and Eq. (19) becomes
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Fu and Fv terms in momentum equations are
mathematical models for momentum loss due to a
fluid and solid interaction in porous media. This term
acts as a source term (S, and S,) in the momentum
equation. Factor F is called shear factor.

Equations (17) to (24) are closure forms and
numerically solvable. Well known finite volume
method by Patankar (1980) is used in to model
numerically. The computational domain is defined as
the duct geometry of the flow to form a continuum
volume. Subsequently, this computational domain is
discretized in finite control volumes. Conservation
laws must be valid at each control volume and so the
whole computational domain. The discretization of
momentum and continuity equations forms a set of
linear algebraic equation. This set of linear algebraic
equations is solved iteratively using a line-by-line
method matrix solver. For each line, linear algebraic
equations are solved using tridiagonal matrix direct
solver, TDMA (Tridiagonal Matrix Algorithm).
Unknown pressure field is handled using a standard
SIMPLE procedure.

Discretization for momentum equation will
have additional term namely source term. Special
method used to solve this equation is by
accomplishing initial predictive pressure field.
Subsequently, this discrete equation is solved to
obtain initial value from velocity filed value. The
discretized pressure equation has been solved to
obtain velocity correction equation and then actual
pressure and velocity will be renewable.

Source term is an influential term in those
equations solution. The source term must be
linearized to avoid unrealistic computation result. The
source term, Eq. (22), is linearized in the form of

S=8,+8,9, 25)
The coefficient S, is kept always less than or equal to
zero. To meet with this criterion, this source is

* dS Y ®
linearized following S=S + [d—Sj (SP -8, )

(26) The symbol SP' is used to denote the previous-

iteration value of 9, .

Results and Discussion

Compariscn between Predicted Velocity Profile
with Stephenson and Stewart Experimental Data
The computational parameters were set to be
the same as experimental parameters of Stephenson
and Stewart (1986). The pipe diameter D, particle
diameter d,, particle Reynold number Re,, tube length
L, bulk porosity €, are respectively 75.7 mm, 7.035
mm, 280, 144.9 mm, 0.354. These data in laminar

flow regime. Experimental measurement of axial velocity
was measured by averaging at distance 0.05 of pipe
radius R. The grid size in the computation was set also to
the length of 0.05 R. The porosity of the bed follows the
profile of Eq. (4).

The results of flow field velocity computation
in packed bed catalytic reactor are compared to measured
axial velocity profile given by Stephenson and Stewart
(1986), which used optical measurement technique.
Reactor configuration in this research is shown in Fig. 1.
Comparing predicted velocity profile between Brinkman-
Forchheimer model and Liu and Masliyah model is
presented in Fig 2. The axial velocity component profile
is shown in Fig. 3 and the radial is presented by Fig. 4.
The vector of these velocity components is depicted in

Fig. 5.
Vi

L, Empty Inlet
L, Packed Bed
L; Empty Outlet

v

Figure 1. Reactor configuration

8

Brinkman-Forchheimer Model |

] DATA of STEPHENSON & STEWART (1986)
|

R

Figure 2. Comparing predicted axial velocity inside
packed bed reactor between Brinkman-Forchheimer
model and Liu and Masliyah model (L,)
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Figure 3. Axial velocity profile inside packed bed
reactor (L,)
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Figure 4. Radial velocity profile inside packed bed
reactor (L,)
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Figure 5. Profile of velocity along the inside packed
bed reactor (Ly)

Those figures indicate that velocity profile
produce the trend of having global maximum and

minimum peaks at distance very close to the wall. The
result of predicted velocity profile using Brinkman-
Forchheimer model differs with Liu and Masliyah model.
The predicted flow fields using Brinkman-Forchheimer
model agree closely to measured velocity from
Stephenson and Stewart’s experiment.

In accordance with Staphenson and Stewart, the
first maximum and minimum peak should occur at
distance 0.2 d, and 0.5 d, from the wall. This value
becomes a critical criterion in comparing the predicted
results using various models and experimental results
(Cheng and Yuan, 1997). These computational results
from Brinkman-Forchheimer model give the first
maximum peak at distance 0.201 d, and the first
minimum peak at 0.57 d,. This means that in term of the
quantity, these computational results are quite accurate.

A quasi-analytical solution for one dimensional at
those experimental parameters above was obtained by
Cheng and Yuan (1997). Their results indicate the second
maximum peak to occur at 1.0 d, from the wall. The
second peak from the present results occurs at distance
1.07 d,. that is almost the same value as Cheng and Yuan
result above.

Comparison between Predicted Velocity Profile with
Kufner and Hofmann Experimental Data

The computational parameters were set to be the
same as experimental parameters of Kufner and Hofmann
(1990). Brinkman-Forchheimer and Liu and Masliyah
models will be introduced in momentum equation. The
computation results of fluid flow field inside packed beds
will be compared with the experimental data of Kufner
and Hofmann.

: [ —— LuandMestyeh Mo i |
w6)| B Detac Kuiner &Holrem (1690) s

T i = = Binkyen-Forcheimer Model /x\}
b 1,443 ool |
"o ‘ in
‘ \

| |
El 08 08 04 02 0 02 04 08 08
Redial position fromwell tovall, 7R

Fig. 6. Axial flow velocity distribution for flow through a
packed bed

Fig. 6 shows the axial flow velocity profile for
an airflows through the packed bed of spheres with
d,=4,5 mm; D=20 mm, average feed velocity (q)=1,883
m/s, £=0,4167 and Re=2285 (Re,=465). These data in
turbulent flow regime. In accordance with Kufner and
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Hofman’s experiment, Liu and Masliyah model more
agree closely to measured velocity than Brinkman-
Forchheimer model.

The radial velocity component profile and
interaction between axial and radial flow velocity
from Liu and Masliyah model are shown in Fig. 7 and
8. Fig. 8 give fluid flow field in packed beds of
spheres. These figures of Liu and Masliyah model
indicate that velocity profile produce the trend of
having global maximum and minimum peaks at
distance very close to the wall. Generally, the
numerical solution of all of shear factor models
agrees with the experimental data.

In accordance with Kufner and Hofmann'’s
data, the first maximum and minimum peak should
occur at distance 0,22d, and 0,66d, from the wall.
This value becomes a critical criterion in comparing
the predicted results using various shear factor
models and experimental results. This computation
results from Liu and Masliyah model give the first
maximum peak at distance 0,17-0.22d, and the first
minimum peak at 0,60-0.62d,. This means that in
term of the quantity, these computational results are
quite accurate.

08 08 04 02 o 02 04 0§ 08 1

-

Velocity, V (mis)
1]

§

Fig. 7. Radial flow velocity distribution

30 J
25

20

Reactordia. 0.02 m

0 5 10 15 20 25 30
Distance from reactor inlet

Fig. 8. Vector plot flow velocity distribution

Conclusion

A mathematical model of the fluid flow in porous
media as an improvement of the conventional models has
been developed. Two-dimensional numerical model to
this mathematical model was established. The numerical
modeling results agree very closely to the existing
literature experimental data at various parameters.

The introduction of the Brinkman-Forchheimer
model to the momentum equation is proven to be
workable in the prediction of the flow in porous media
limited in laminar flow regime. The computational results
also indicate a good agreement with Stephenson and
Stewart experimental data. Furthermore, these results are
also considered to be accurate in which the predicted
global velocity maximum and minimum occur at the
distance close the experimental data, 0.201 d, and 0.57

The numerical results for the Liu and Masliyah
model velocity distribution show a good agreement with
the Kufner and Hofman experimental data. The flow field
profiles on axial direction agree well with the existing
literature experimental data. It is observed that the first
maximum peak occurs at distance of 0,17-0.22d,; the
second maximum peak occurs at distance of 1.00-1.02d,
and the first minimum peak occurs at distance of 0.60-
0.62d, However, this model can used limited in turbulent
flow regime only.

From this results can be concluded that the
comparison of present numerical modeling results with
experimental and quasi-analytical results leads to some
important findings. The convection and the diffusion
terms in the mathematical modeling can be solved
numerically and no need to be excluded. The effect of
these terms to the flow field prediction exists especially
to complex flow configuration that can be solved one-
dimensional approach. It may be argued that these terms
can be neglected. This practice may be valid for strong
one-dimensional flow in porous media. This numerical
model is considered to be accurate. Furthermore, the
radial velocity profile can be predicted in which its
importance is very clear for real flow, non one-
dimensional flow. There are various non-ideal problems
of the flow in porous media can be investigated using this
numerical model. The established numerical model offers
the mean for the investigation of the effects of various
parameters.
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Nomenclature

Pd = oscillation period

D = reactor diameter, m

d, = particle diameter, m

o = viscous resistance coefficient

B = inertia resistance coefficient

€p = bulk porosity

G = gravitation force, m/s’

Er = exponential decaying function
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= permeability, m™

= packing length, m

= source term

= pressure, kg/m.s’

= particle Reynold number

= reactor radius, m

= superficial velocity x-direction, m/s
= superficial velocity y-direction, m/s
= porosity

= fluid viscosity . kg/m.s

= fluid density, kg/m’

pu; = mass flux, kg/m’.s

= momentum flux, kg/m.s

= nabla, operator gradient

J = flux

Subscript: 0 = initial value

ntm<=-‘§unmr‘w

o)
<2
-
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