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Abstract 

 

The mathematical models can be used as a tool in predicting microbial population in sorghum fermentation, either 

spontaneous fermentation or fermentation with the addition of lactic acid bacteria (LAB) inoculum. Gompertz model 

modified by Gibson, Gompertz model modified by Zwietering, Baranyi-Robert model, Fujikawa model, Richards 

model, Schnute model were used in predicting the growth of lactic acid bacteria (LAB) and coliform bacteria during 

spontaneous fermentation, and also the growth of LAB during fermentation with the addition of inoculum. Meanwhile, 

there was death (inactivation) of coliform bacteria during sorghum fermentation with the addition of LAB inoculum. 

The Geeraerd model and the Gompertz model modified by Gil et al. were used to predict the inactivation. The accuracy 

and precision of models were evaluated based on the Root Mean of Sum Square Error (RMSE), coefficient of 

determination (R2), and curve fitting. Gompertz model modified by Gibson had the highest accuracy and precision, 

which was followed by the accuracy of the Fujikawa model and Baranyi-Robert model in predicting the growth of 

LAB and the growth of coliform bacteria during spontaneous fermentation. Meanwhile, in predicting LAB growth 

during fermentation with the addition of inoculum, high accuracy and precision was obtained from Richards and 

Schnute models. In predicting the inactivation of coliform bacteria, Geeraerd model provided higher accuracy and 

precision compared to Gompertz model modified by Gil et al. 
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INTRODUCTION 

Sorghum is a cereal commodity which its 

productivity ranks fifth in the world after other cereal 

crops, i.e. wheat, rice, corn and barley. This plant is 

predominantly cultivated in Mexico and America 

which both countries occupy first and second position 

as the largest producer (Wong et al., 2009). Sorghum is 

increasingly popular in African and Asian countries 

because of its ability to survive on dry land. In 
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Indonesia, exactly in the East Nusa Tenggara province, 

sorghum is used as a staple food. 

The dominant nutrients in dried sorghum grain 

are protein (7.5 -10%) and starch (70-80%), depending 

on the type of grain and land. The content of these 

nutrients is almost similar as wheat. However, protein 

and starch digestibility in sorghum is very low. In fact, 

sorghum’s starch digestibility is the lowest among 

other cereals (Kulamarva et al., 2010). The 

phenomenon is affected by structure and components 

of sorghum. It is known that grain of sorghum consists 

of  three parts: outer protector part called as pericarp, 

embryo (germ) part, and endosperm part. The 

distribution of starch granules of these three parts is 

different. The percentage of the pericarp and embryo on 

the grain (kernel) of sorghum is small, so that the starch 

content in both parts is also small. Meanwhile, the 

biggest starch content is found in the endosperm. 

Sorghum’s endosperm was divided into an outer part 

called as aleurone layer endosperm and an inside part 

called as subaleurone layer (peripheral) endosperm. 

Peripheral endosperm consists of the part called 

corneous endosperm and also the deepest part called 

floury endosperm. Starch granules of the corneus 

endosperm that are resistant to water or enzymatic 

hydrolysis are surrounded by body protein and attached 

to a matrix composed of non-starch protein and 

carbohydrate. They have hard and glassy appearance. 

Meanwhile, starch granules in floury endosperrm have 

dense and soft characteristics (like flour) and they are 

easy to undergo enzymatic hydrolysis. 

Protein in sorghum is divided into two groups, 

namely the kafirin protein and non-kafirin protein (i.e. 

globulin, albumin, prolamin and glutelin). Kafirin is the 

main protein constituent of body protein which 

surround starch granules of corneus endosperm. Until 

70-80% of the total protein of sorghum flour is kafirin. 

Kafirin is very easy to form disulfide bond which is 

resistant to undergo lysis by protease enzyme. It 

automatically reduces digestive capacity and starch 

gelatination. Non-kafirin protein is also a barrier to 

starch digestibility because this protein is the 

constituent of the protein matrix in which the body 

protein is attached, as it has been known that starch 

granules are surrounded by body protein. In compiling 

protein matrix, non-kafirin protein is cross-linked with 

the kafirin protein. Sorghum cooking facilitates this 

cross-linking to easily undergo conformation which 

subsequently form a disulfide complex, so that 

digestion capacity and starch gelatination will decrease. 

Besides being due to endosperm protein factor, 

low starch digestibility is also caused by the presence 

of tannin compound in sorghum. Tannin forms a 

complex with proteins and has the characteristic as 

inhibitor of the X-Amilose enzyme (Dreher et al., 

1984). The protein digestibility of sorghum is also low, 

which is only 30-70% (Silano, 1977). This value is 

lower than protein digestibility of corn, which is 78.5%. 

This fact is due to amino acid bioavailability and 

inhibition of protein digestibility by tannin (Bach 

Knudsen et al., 1988). Another factor of sorghum’s 

starch disgestibility is cooking which can reduce 

prolamin solubility (Hamaker et al., 1986). 

One process that can be applied to improve 

starch and protein digestibility of sorghum is 

fermentation. Yousif and El Tinay (2001) said that 

fermentation will increase protein availability through 

partial degradation of protein complex by enzymatic 

activity (enzymatic hydrolysis). In the fermentation 

process, the target of enzymatic hydrolysis (proteolytic 

activity) is the kaffirin-rich protein matrix. In this 

process, water soluble protein is produced within 

kafirin in the form of its originality. In the process of 

fermented-sorghum cooking, kafirin will form 

aggregates that are not water-soluble. The process will 

release starch granules which are previously bound to 

kafirin (Elkhalifa et al., 2007). The fermentation 

process will also increase the fraction of albumin and 

globulin, and also reduce the tannin content, even until 

92% of the total tannin that is bound to the complex 

with protein. It is might due to the activity of 

microorganisms. 

Fermentation of sorghum flour can be done 

spontaneously or with the addition of lactic acid 

bacteria (LAB) inoculum. One of studies was 

conducted by Utami et al. (2015). In that study, 

spontaneous fermentation was carried out through 

fermentation naturally by original microorganisms of 

sorghum flour. Meanwhile, in the fermentation with the 

addition of LAB starter (inoculum), the bacterial 

inoculum (Lactobacillus plantarum inoculum) isolated 

from sorghum flour  was added to the sorghum 

fermentation system without sterilizing sorghum flour 

first, so there were still contribution of microorganisms 

from sorghum flour. The target in that study was to 

increase starch and protein digestibility through 

microorganism activity. In that study, it was found that 

spontaneous (natural) fermentation induced the 

population of LAB and coliform bacteria respectively 

from 1.45 log and 2.85 log to 9.14 log and 7.98 log for 

fermentation time of 24 hours. The final population of 

coliform bacteria was high because organic acids (lactic 

acid, etc.) produced by the activity of lactic acid 

bacteria had not been able to suppress coliform bacteria 

yet. The fact had been strengthened by the final pH of 

4.75. Meanwhile, in fermentation with the addition of 

the Lactobacillus plantarum starter, the population of 

LAB and coliform bacteria changed respectively from 

7.58 log and 3.49 log to 9.28 log and 0 log for 

fermentation time of 24 hours. From the Utami’s data 

of sorghum fermentation with addition of LAB 

inoculum, the population of LAB reached maximum 

value at time fermentation of 6 hours and there was the 

suppression of the coliform population. It was due to 

the high population of lactic acid that automatically 

increase the concentration and amount of organic acid 

produced. Furthermore, the pH would decrease with the 

final pH of 3.41 (coliform bacteria can not live at pH 

below 4). 

The decreasing of coliform bacteria by the 

increasing of the LAB population is the target aspect in 

the process of sorghum fermentation. Sorghum 
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fermentation can be interpreted as an effort to achieve 

the food safety of sorghum product. In the fermentation 

and controlling microorganisms field, to determine the 

status of bacterial populations, sampling every time 

have not to be done. This can provide efficiency of 

time, effort and cost (Teleken et al., 2018). The 

mathematical model is one of the tools for predicting 

bacterial population, both in the scope of fermentation 

and also the shelf life and distribution of product. 

Increasing the scale of fermentor (scaling-up) can also 

be done through mathematical model of bacterial 

population during fermentation process. Mathematical 

models can also help in ensuring food security through 

prediction of pathogen population during product 

storage and distribution. 

There are various mathematical models of 

bacterial population kinetic. Generally, those are 

divided into two groups, namely empirical-based 

models and mechanistic-based models. The empirical 

model describes population kinetics without involving 

parameters that related to microorganism growth. One 

empirical model is Monod model which is very old and 

familiar in the microbiology scope, but this model has 

limitation because bacterial population is  dependent 

variable of the substrate. This model is reliable for the 

growth kinetics of the logarithmic phase. However, by 

the fact that the population curve of the growth of 

microorganisms is sigmoid, then other empirical 

models such as Gompertz model, Fujikawa model, 

Baranyi-Robert model, Richards model, and Schnute 

model are more reliable to be used. The empirical 

model usually describes sigmoidal function between 

microorganism populations and time. Meanwhile, 

mechanistic model is a model that describe the 

mechanism and the causes of changes in 

microorganism population. This model is developed 

fundamentally from theoretical and experimental data 

by involving parameters related to the growth of 

microorganisms, such as pH, temperature, water 

activity, substrate content, CO2 levels, etc. 

This study was aimed to predict microorganism 

population in spontaneous fermentation and also 

fermentation with inoculum addition of sorghum flour 

by applying several empirical models, such as the 

Gompertz model, Fujikawa model, Baranyi-Robert 

model, Richards model, and Schnute model. The 

parameters involving with the model were estimated by 

minimizing the Root Mean of Sum Square Error 

(RMSE) and coefficient of determination (R2). The 

model was selected based on the value of RMSE and 

R2. Through the mathematical model application, it is 

expected to obtain suitable models for describing 

microbial population in sorghum fermentation. It is 

expected that the application of mathematical models 

as tools in predicting microorganism populations will 

provide benefits, those give efficiency in controlling 

microorganisms in the fermentation process and also 

provides growth data for scaling-up of fermentation. 

Regarding with few national publications in which use 

mentioned empirical model besides Monod model, this 

research is expected for introducing other empirical 

models already mentioned to national academician and 

microbiologist. 

 

RESEARCH METHOD 

The data obtaining 

Data was taken according to Utami’s research 

including spontaneous (natural) fermentation and 

fermentation with addition of lactic acid bacteria 

(LAB) inoculum (Utami et al., 2015). Briefly, the 

experiment was conducted according to Sudanese 

housewives (Mohammad et al., 1991). The experiment 

was initiated by mixing sorghum flour with sterilized 

water in ratio of 1:2 (w/v). Furthermore, the mixture 

was incubated and fermented in sterilized jar at 30oC 

for 24 hours.  Because the sorghum flour was not 

sterilized, the original microorganisms performed in 

spontaneous fermentation. Meanwhile, fermentation 

with addition of lactic acid bacteria (LAB) inoculum 

involved with either original microorganism or lactic 

acid bacteria Lactobacillus plantarum S4512 inoculum 

that was prepared previously by isolation from natural 

fermentation. The inoculum was inoculated by 

concentration of 1% v/v (about 109 cfu/ml) into mixture 

medium consisting of unsterilized sorghum flour and 

sterilized water in ratio of 1:2 (w/v). Furthermore, the 

fermentation was conducted at 30oC for 24 hours. 

Sampling for microbial counts was carried out at 0, 2, 

4, 6, 8, 12, 16, 20, and 24 h. The microbial data are 

shown at Table 1 and Table 2. 

 

Table 1. Population of lactic acid bacteria (LAB) and 

coliform bacteria during sorghum spontaneous 

fermentation 

Fermentation Time 

(hour) 

Lactic acid 

bacteria (LAB) 

(log cfu/ml) 

Coliform 

bacteria 

(log cfu/ml) 

0 1.45 2.85 
2 1.60 3.50 

4 2.52 3.73 

6 4.10 4.01 

8 4.94 4.81 
12 7.22 6.21 

16 8.39 7.73 

20 9.10 7.79 

24 9.14 7.98 

Table 2. Population of lactic acid bacteria (LAB) and 

coliform bacteria during sorghum fermentation with 

addition of lactic acid bacteria (LAB) inoculum 

Fermentation 

Time (hour) 

Lactic acid 

bacteria (LAB) 

(log cfu/ml) 

Coliform 

bacteria 

(log cfu/ml) 

0 7.58 3.49 

2 8.49 3.55 

4 8.65 3.52 

6 8.89 3.35 
8 9.04 2.83 

12 9.10 1.31 

16 9.22 0 

20 9.25 0 
24 9.28 0 
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Brief description of empirical models 

Generally, the kinetics of microbial population 

consist of growth kinetics and inactivation kinetics. The 

difference lies in the rate of change of the population. 

Microbial growth has a positive rate of population 

change, while microbial inactivation has a negative rate 

(Bernaertz et al., 2006). 

 

Microorganism growth kinetic model  

The growth kinetics of microorganism 

(bacteria) include several phases, namely lag phase, 

logarithmic/exponential phase, and stationary phase. 

Lag phase is the phase where microorganism adapt and 

survive in a new environment. After microorganism 

can adapt to the new environment, the microorganism 

will grow in a number until the growth rate reach 

maximum rate. This phase is called  as 

logarithmic/exponential phase. This condition is 

supported by sufficient substrates. As time goes on, 

environmental condition and adequacy of the substrate 

have begun to be diminished, so that the population of 

microorganisms will be in constant value. This means 

that the amount of microorganism growth is the same 

as the amount of microorganism mortality. This phase 

is called as stationary phase. The several growth kinetic 

models of microorganism that had been developed are 

as follow: 

 

Gompertz model 

The Gompertz model is a classical model that 

was originally formulated to describe human mortality 

data (Okpokwasili and Nweke, 2005). This model 

illustrates the exponential relationship between 

population density and specific growth rate, with the 

following formula: 

 

 (1) 

Where t = time, N = population density at time 

t, C = upper asymptotic value, that is the maximum 

population density, M = time at which the absolute 

growth rate is maximal, and B = relative growth rate at 

M time. 

Gibson  et al. (1987) modified the Gompertz 

model, so that it can describe the relationship between 

cell population over time, with the following formula: 

 

 (2) 

Where N = population density at time t, A = 

value of the lower asymptote (log N( -∞)), D = 

difference in value of the upper and lower asymptote 

[log N(∞) – log N(- ∞)], M = time at which the 

exponential growth rate is maximum. 

Zwietering et. al (1990) conducted reparameter 

to the Gompertz model by including biological 

parameters such as the Umax and lag time (λ), through 

the following formula: 

  

 (3) 

 

Where N = population density at time t, N0 = 

population density at initial time t0, Umax = maximum 

specific growth rate, λ = lag time, and A = asymptote 

(ln(N∞/N0)).  

 

Richards Model 

The original equation of Richards model 

(Richards, 1959) was as following: 

 

 (4) 

By Zwietering’s reparameter (Zwietering et al., 

1990), the following formula was produced: 

                                                                                                                                               

  

 (5) 

 

Where ν = shape parameter 

 

Schnute Model 

The Schnute model equation (Schnute, 1981) 

was as follow: 

                                                                                           

 (6) 

With Zwietering’s reparameter (Zwietering et 

al., 1990), the following formula was produced: 

                                                                                                                    

 

    (7) 

Where a and b are mathematical parameters in 

sigmoidal curve. 

 

Fujikawa Logistic Model 

The logistic model was first developed by 

Verhulst, 1838 with the existence of inhibitory 

functions to describe the stationary phase (Horowitz et 

al., 2010), with the following formula: 

                  

 (8)      

Where Nasympt is the asymptotic population, 

which correspond to the population size at the 

“stationary 

phase 

There were several modifications to the logistics 

model, one of them was Fujikawa modification 

(Fujikawa and Morozumi, 2005) with the following 

formula: 

   

 (9)   

Where m and n are constant parameters (m and 

n > 0) which related to the curvature of the deceleration 

phase and the period of the lag phase, respectively 

(Fujikawa et al., 2014). 

The modified logistic model (Fujikawa model) 

accommodates the adaptation phase (lag phase) where 

the growth rate at this phase is very low. To represent 
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it, a parameter (factor) that control the rate of bacterial 

growth was developed. In this case the parameter is 

Nmin, which is almost the same as the bacterial 

population initial time, N0. Fujikawa recommended that 

Nmin value is 1 ppm smaller than N0 (Nmin = (1-10-6) x 

N0. 

 

Baranyi and Robert Model 

This model is a combination of the Michaelis-

Menten Model and the logistic model (Baranyi and 

Robert, 1995), with the following formula: 

                                                                                                                                             

 

 (10) 

       is physiological state of cell growth.   

The Baranyi and Robert model provides 

biological interpretations for lag phases through 

physiological state parameters (Baranyi and Robert, 

1995). Because the Baranyi and Robert model can 

illustrate a few external factors related to the growth of 

microorganisms through physiological state parameters 

for the lag phase, this model is often called a semi-

mechanistic model, even some scientist classify it into 

the mechanistic model (Teleken et al., 2018).  

 

Inactivation model (death phase) 

The empirical models of microbia growth have 

mentioned already does not accommodate 

inactivation/death phase because it usually 

accommodates until the stationary phase. Generally, 

bacterial inactivation includes mechanisms, namely 

shoulder phase that describes a slow microbial 

inactivation response, a log-linear phase that describes 

the maximum rate of inactivation, and the tailing phase 

that describes microbial populations that are resistant to 

inactivation (Bernaerts et al, 2004). Several empirical 

models of microorganism inactivation had been 

developed, including: 

 

Geeraerd model 

The Geeraerd model which is a sigmoid model 

accommodates three mechanisms in microbial 

inactivation processes, namely shoulder, log-linear, and 

tailing phase (Geeraerd et al., 2000), with the following 

formula: 

    

 

  

(11)      

Where Cc(t) is physiological state of cell 

inactivation, kmax is specific inactivation rate, and Nres 

is residual population. 

 

 

Gompertz model modified by Gil et al. 

Gil, Miller, Silva, and Brandao modified the 

Gompertz model to predict microbial inactivation 

through a similarity approach to the modification of the 

Gompertz model by Zwietering (Gil et al., 2011), so 

that the model was obtained as following: 

 

 

 

 

 (12) 

 

Where N is population at time (t), N0 is initial 

population, and L is time parameter or shoulder. 

 

Assumptions 

The models mentioned previously are usually 

applied to single microorganism. However, in 

spontaneous fermentation there was not only the 

desired growth of microbes (lactic acid bacteria), there 

was also the growth of gram-negative bacteria, namely 

coliform bacteria. In spontaneous fermentation, the two 

bacteria grew with a positive growth rate. Prediction of 

microbial populations in spontaneous fermentation 

applying the growth kinetic models mentioned 

previously used the assumption that the two bacteria 

did not compete and interact each other. This was due 

to abundant substrate and low initial concentration of 

bacteria in the fermentation medium, so that the two 

bacteria did not collide and interact each other. 

The same assumption was also applied to 

fermentation with the addition of lactic acid bacteria 

(LAB) inoculum. However, there was an added 

assumption that was the use of an inactivation model on 

the prediction of the population of coliform bacteria 

because the rate of change in the coliform population 

was negative. It was marked and initiated by slow 

response of microbial inactivation (shoulder phase). 

 

Factors evaluated in the assessment of the accuracy 

of the kinetic model 

For comparing the accuracy of among models, 

several parameters in the model had to be searched by 

minimizing Root Mean of Sum Square Error (RMSE) 

The minimizing was conducted by Matlab software. 

Some of the parameters that had to be observed are 

listed in Table 3. 

Based on Ruhanian and Movagharnejad (2016), 

the RMSE value is formulated as follows : 

 

 

(13) 

With yi is experimental data, fi is model 

(prediction) data, where N is the number of 

experimental points. 
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Table 3. Growth and Inactivation Models with Their 

Observed Parameter 

Model 
Observed 

Parameter 

Growth Model  

Gompertz model modified by Gibson A,B,D,M 

Gompertz modified by Zwietering A 

Richards model A,v 

Schnute model a,b 

Fujikawa model m,n 

Baranyi and Robert model Q (0) 

Inactivation Model  

Geeraerd model Ce (0) 

Gompertz model modified by Gil et al - 

 

Evaluation of the accuracy and performance of the 

model was based on the RMSE value. Small RMSE 

value indicates better model fitting which mean that the 

model has a higher level of accuracy. From a number 

of references, it is found that the RMSE value of 0.7 is 

included in the low category for data with a range of 

values 0 to 1000. However, for data with a value range 

of 1 to 10 (data difference of 10 points), the RMSE 

value of 0.7 is not included in low category (Aryadoust 

and Raquel, 2019). 

Besides RMSE, the coefficient of determination 

(R2) was used to evaluate the performance of the model 

in predicting microbial populations, which are 

formulated as the following formula: 

 

 

 

 

 (14) 

With yi is experimental data, fi is model 

(prediction) data , and     is the average of the 

experimental data. 

R2 value range from 0 to 1. The high R2 value 

which is close to 1 shows that the model prediction and 

fitting for the experiment is good, while a low R2 value 

(<0.5) illustrates the lack of accuracy of the model (Di 

Bucchianico, 2018). 

 

RESULTS AND DISCUSSIONS 

Spontaneous Fermentation 

In spontaneous fermentation, lactic acid bacteria 

(LAB) and coliform bacteria underwent population 

growth and did not undergo inactivation (death), so that 

the models used to describe the population of the two 

bacteria were models of microorganism growth with 

the mentioned assumptions. Figure 1 and 2 show the 

prediction of the population of LAB and coliform 

bacteria respectively during spontaneous fermentation 

of sorghum through several mathematical models. 

 

 

 

 

Figure 1. Population Profile of Lactic Acid Bacteria in 

Spontaneous Fermentation 

From Figure 1, it can be seen that the model data that 

was closest to the experimental data was resulted by the 

Gompertz model modified by Gibson, which was 

followed successively by Fujikawa and Baranyi-Robert 

model. This was supported by the values of RMSE and 

R2 in Table 4. The Gompertz model modified by 

Gibson gave the smallest RMSE value with the R2 

value that was close to 1. As be shown at Figure 1, 

Gompertz model modified by Gibson provided the best 

and most appropriate curve fitting, with all parts 

coincided with the experimental data, including the 

population at t = 0 (N0). The Fujikawa model was 

slightly lower in accuracy than Gompertz model 

modified by Gibson because there were several 

population points that shifted toward the experimental 

points, when t = 2 hours, 4 hours and 6 hours. 

Meanwhile, the declining in the accuracy of the 

Baranyi-Robert model was caused by shifting of 

population at t = 0 (N0) which was rather far from the 

experimental point. It made the transition coefficient 

(α) sharply shaped within inflection point that was not 

very visible. It seems that there was no lag phase in the 

Baranyi-Robert model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Population Profile of Coliform Bacteria in 

Spontaneous Fermentation 
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Table 4. Values of Observed Paramater, RMSE, R2 

Obtained from Various Growth Model Approach to 

LAB Population in Spontaneous Fermentation 

Growth 

Model 

Value of 

Observed 

Parameter 

RMSE R2 

Gompertz 

model 

modified by 
Gibson 

A = 1.2471; 

B = 8.1454; 

C = 0.2204; 
D = 6.6603 

 

0.1395 0.9978 

Gompertz 

modified by 
Zwietering 

A = 20.7284 

 
 

 

0.5319 0.9682 

Richards 

model 

A = 20.7911; 

B = -0.0181 
 

0.5319 0.9682 

Schnute 

model 

a = 0.1447; 

b = 0.0181 

 

0.5319 0.9682 

Fujikawa 

model 

m = 0.7018; 

n = 13.4424 

 

0.2430 0.9934 

Baranyi and 
Robert model 

q0= 9.2256 
 

0.2900 0.9906 

 

From Figure 1, the models that were far from the 

experiment were Gompertz model modified by 

Zwietering, Richards model, and Schnute model. The 

shifting can be seen in each phase including lag phase, 

logarithmic phase, and stationary phase. From Table 4, 

RMSE and R2 values were also similar for the three 

models, that were RMSE of 0.5319 and R2 of 0.9682. 

However, regarding with bacterial population data in 

the range 0 - 10 (data range difference was 10 points), 

the RMSE value of 0.5319 was not concluded as small 

RMSE value. It can be said that the three models had 

low accuracy compared to other models, moreover they 

had lower R2 values. 

Meanwhile, the growth profile of coliform bacteria in 

spontaneous fermentation can be seen at Figure 2. The 

result of model prediction on the growth of coliform 

bacteria had similar tendency as the growth of lactic 

acid bacteria. Data from Gompertz model modified by 

Gibson provided curve which coincided with 

experimental data. Moreover, it can also be seen in 

Table 5 that the model had the lowest RMSE value of 

0.2087 and the highest R2 value of 0.9883. The 

accuracy of the Gompertz model modified by Gibson 

was followed by Fujikawa model with the RMSE value 

of 0.2164 and the Baranyi-Robert model with RMSE of 

0.2182. The Gompertz model modified by  Zwietering, 

Richards model, and Schnute model had lower 

accuracy compared to the three models already 

mentioned with the value of RMSE 0.3323; 0.3324; 

0.3324 respectively. Regarding with the experimental 

population in range of 0 - 8 (data difference was 8 

points), the all of three RMSE value could be concluded 

as moderate value. 

 

Table 5. Values of Observed Paramater, RMSE, R2 

Obtained from Various Growth Model Approach to 

Coliform Bacteria Population in Spontaneous 

Fermentation 

Growth 

Model 

Value of 

Observed 

Parameter 

RMSE R2 

Gompertz 
model 

modified by 

Gibson 

A = 3.1256; 
B = 5.1658; 

C = 0.2105; 

D = 8.3700 

 

0.2087 0.9883 

Gompertz 

modified by 

Zwietering 

A = 14.6097 

 

 

 

0.3323 0.9705 

Richards 

model 

A = 13.5525; 

B = 0.4631 

 

0.3324 0.9722 

Schnute 
model 

a = 0.1708; 
b = -0.4631 

 

0.3324 0.9722 

Fujikawa 

model 

m = 5.6949; 

n = 23.8844 
 

0.2164 0.9875 

Baranyi and 

Robert model 

q0= 0.9884 

 

0.2182 0.9873 

 

Fermentation with Addition of LAB Inoculum 

In fermentation with the addition of LAB 

inoculum, according to Figure 3 and Figure 4, it can be 

seen that the lactic acid bacteria (LAB) grew over 

fermentation time, while coliform bacteria  underwent 

inactivation (death). By comparing Figure 1 and Figure 

3, it can be seen that original LAB in spontaneous 

fermentation required time to conduct cell division., so 

that there was lag phase in growth profile. Meanwhile, 

the addition of LAB inoculum made no lag phase in 

LAB growth profile.  It indicated that inoculum 

administrated to the medium was exponentially 

growing culture. Moreover, the addition of LAB 

inoculum could accelerate LAB growth rate. It was 

needed  faster time (that was 6 hours) to achieve 

maximum growth (stationary phase) in fermentation 

with inoculum addition than that of spontaneous 

fermentation, which was 14 hours. It was in agreement 

with research of milk fermentation by Lactobacillus 

plantarum Dad 13 which reported that addition of 

inoculum could reduce lag time and also increase 

growth rate (Wardani et al., 2017). The same tendency 

was also found at bacterial cellulose research which 

obtained that inoculum increased bacterial cellulose 

production (Yanti et al., 2018). The higher growth rate 

of LAB would induce an increase in the concentration 

of its metabolite (acid), so that the pH drop of 

fermentation with addition of  LAB inoculum was 

greater than that of spontaneous fermentation. It was 

proven by data of Utami et al. (2015) which stated that 

pH of fermentation with the addition LAB inoculum 

dropped to 3.41, while pH of spontaneous fermentation 

altered to 4.75. It had been mentioned that coliform 

bacteria are difficult to grow at pH below 4.0 (Ray, 
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1996), so that coliform underwent an inactivation 

(death) process in fermentation with the addition of 

LAB inoculum. Meanwhile, coliform bacteria in 

spontaneous fermentation still had chance to grow. 

Regarding with the prediction of model on the growth 

kinetics of LAB population in fermentation with LAB 

inoculum addition found at Figure 3, it appears that the 

Richards model and Schnute model coincided closely 

with the experimental data. This is agreed with the 

lowest RMSE values and the highest R2 values of the 

two models with the same values, i.e, 0.0759 and 

0.9781 respectively according to Table 6. The high 

accuracy was followed respectively by Gompertz 

model modified by Gibson, Fujikawa model, Gompertz 

model modified by Zwietering, Baranyi-Robert model 

with RMSE and R2 values which can be seen in Table 

6. Based on the RMSE values of Gompertz model 

modified by Zwietering and Baranyi-Robert model and 

also the range of data which was from 7.4 to 9.4 (the 

difference of data range was only 2 points), the RMSE 

values of two model were not included in the low 

category. This indicates that the accuracy of the two 

models were classified to low accuracy. This can also 

be seen from the shifts which were rather far away 

during the stationary phase for the two models. 

There was a difference between the accuracy of 

the growth model in predicting the growth of LAB 

population during inoculum fermentation and the 

accuracy of the prediction of LAB and coliform 

bacteria population growth during spontaneous 

fermentation. The Gompertz model modified by 

Gibson, Fujikawa model, and Baranyi-Robert model 

that provided high accuracy and precision and also the 

best fitting curve for the prediction of LAB and 

coliform bacteria population growth during 

spontaneous fermentation did not show similar results 

in the prediction of BAL population growth during 

fermentation with addition of inoculum. High accuracy 

and precision in predicting the growth of LAB 

population during inoculum fermentation was obtained 

through Richards model and Schnute model. This 

difference was due to difference in system 

characteristics between the two fermentation. 

 

 
Figure 3. Population Profile of Lactic Acid Bacteria 

(LAB) in Fermentation with LAB Inoculum Addition 

Table 6. Values of Observed Paramater, RMSE, R2 

Obtained from Various Growth Model Approach to 

LAB Population in Fermentation with LAB Inoculum 

Addition 

Growth 

Model 

Value of 

Observed 

Parameter 

RMSE R2 

Gompertz 
model 

modified by 

Gibson 

A = 6.7622; 
B = 2.4401; 

C = 0.3793; 

D = 0.0000 

 

0.0908 0.9686 

Gompertz 

modified by 

Zwietering 

A = 3.5229 

 

 

 

0.1503 0.9139 

Richards 

model 

A = 3.7791; 

B = -0.9849 

 

0.0759 0.9781 

Schnute 
model 

a = 0.2957; 
b = 0.9849 

 

0.0759 0.9781 

Fujikawa 

model 

m = 0.3906; 

n = 115.8623 
 

0.1243 0.9411 

Baranyi and 

Robert model 

q0= 1.0802 

 

0.1902 0.8621 

 

As already mentioned, the addition of LAB inoculum 

caused faster adaptation and growth of LAB. 

Meanwhile, the kinetic of inactivation (death) of 

coliform bacteria can be seen in Figure 4. Geeraerd 

model gave more accurate and more coincidental to 

experimental data than the Gompertz model modified 

by Gil et al. The Geeraerd model and experimental data 

coincided each other in almost every part (the shoulder 

phase, logarithmic phase, and tailing phase), although 

the model data in the tailing phase were shifted slightly 

from experimental data. 

The accuracy of the Geeraerd model can also be 

seen from its smaller RMSE value which was 0.1078 

and high R2 value which was 0.9952 at Table 7. RMSE 

value of the Gompertz model modified by Gil et al. 

provided low accuracy. As can be seen that there was a  

 

 

Figure 4. Population Profile of Coliform Bacteria on 

Fermentation by Addition of LAB Inoculum 
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Table 7. Values of Observed Paramater, RMSE, R2 

Obtained from Various Inactivation Model Approach 

to Coliform Bacteria Population in Fermentation with 

LAB Inoculum Addition 

Growth 

Model 

Value of 

Observed 

Parameter 

RMSE R2 

Geeraerd 
model 

Cc(0)   = 179.3018 
 

 

0.1078 0.9952 

Gompertz 

model 
modified by 

Gil et al. 

- 

 
 

 

0.5229 0.8877 

 

large shifting between the model data at the logarithmic 

phase, as well as a slight shifiting at the tailing phase. 

RMSE values of 0.5229 and R2 of 0.8877 emphasized 

that the model had a low accuracy by paying attention 

to the range of bacterial population data from 0 to 3.5 

(the difference of data range was 3.5 point). 

Some primary (empirical) models were also 

used by several studies to predict bacterial population. 

Gompertz model modified by Zwietering and the 

Baranyi-Robert model had higher accuracy and 

precision than other models in predicting the growth of 

Lactobacillus plantarum (Longhi et al., 2013). Li et al. 

(2013) predicted population of lactic acid bacteria in 

raw beef product that was vacuum-packed. In that 

study, mathematical models were used, i.e. Gompertz 

model modified by Gibson, Baranyi model, Logical 

model, and Huang model. All four models had high 

accuracy in predicting bacterial growth. As for bacterial 

inactivation, the Geeraerd model also provided high 

precision in the inactivation of Bacillus pumilus (Albert 

and Mafart, 2005). Longhi et al. (2005) said that a 

certain model may be more feasible and accurate in 

describing the kinetics of bacteria population 

depending on the specific and characteristic of bacteria 

that differ one another, as well as the characteristic of 

fermentation (for example was environmental factor). 

 

CONCLUSIONS 

Several mathematical models had been applied 

to the prediction of the growth of lactic acid bacteria 

(LAB) and coliform bacteria during spontaneous 

fermentation of sorghum and prediction of LAB growth 

during sorghum fermentation with the addition of LAB 

inoculum. The models including the Gompertz model 

modified by Gibson, Gompertz model modified by 

Zwietering, Baranyi-Robert model, Fujikawa model, 

Richards model, and Schnute model had different 

accuracy depending on the bacterial characteristic and 

specification and also characteristic of the fermentation 

system. In predicting the growth of LAB and coliform 

bacteria during spontaneous fermentation, high 

accuracy and prediction were obtained from Gompertz 

model modified by Gibson, which was then followed 

by the Fujikawa model and Baranyi-Robert model. 

While the Richards model and the Schnute model had 

high accuracy in the prediction of LAB growth during 

fermentation with LAB inoculum addition. During 

sorghum fermentation with of LAB inoculum addition, 

coliform bacteria underwent inactivation (death). By 

applying the Geeraerd model and Gompertz model 

modified by Gil et al. to the inactivation prediction, it 

was found that Geeraerd model provided higher 

accuracy and precision. Finally, those accurate 

mathematical models can be applied in controlling 

microorganisms in the sorghum fermentation process 

or used as kinetic data for scaling-up of sorghum 

fermentation. 
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