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Abstract 

In this paper a theoretical model for the elastic-plastic microcontact model of asperities is presemted. Relation 
of the contact parameters, such as the mean contact pressure, the contact area and the contact load as a function of the 
contact interference are modeled in the elastic, elastic-plastic and fully plastic contact regime. The model is verified by 
the experimental results and is compared with published theoretical models. Very good agreement between the present 
model and the experimental results are found compared to the prediction of the other contact models.    
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INTRODUCTION 

Contact deformation occurs when two 
engineering surfaces are pressed together. Depending 
on the scale considered, this contact deformation can 
be categorized as; macro-contact and micro-contact. 
Most surfaces are rough on micro-scale. High points or 
micro-protrusions, usually called asperities, exist on 
most engineering solid surfaces, see Figure 1. In non-
lubricated or boundary lubrication systems, when such 
surfaces are loaded against each other, the actual 
contact takes place at these asperities. Contact will 
initially occur at a limited amount of asperities and the 
number of asperities in contact becomes larger as the 
normal load increases. Depending upon the load 
carried by the asperities and its mechanical properties, 
the asperities may deform elastic, elastic-plastic or 
fully plastic [1].  

The deformation states of the surface asperities 
are very important in studying friction, wear, 
lubrication, electrical contact resistance, etc. Plastic 
deformation changes the surface topography. 
Understanding the relationship between local contact 
properties and surface topography can lead to the 
specification of optimized surface topography and 
manufacturing processes with respect to the desired 
functional properties of the surface. Research has been 
performed in order to model the deformation behaviour 
of the bodies in contact [2-15]. This was pioneered by 
Greenwood and Williamson [2]. In their model a 
nominal flat surface is assumed to be composed with 
spherical asperities of the same radius and the height of 
the asperities is represented by a well-defined statistical 
distribution function (i.e. Gaussian). The contact 
analysis is based on the Hertz theory [3] where the 
asperities deform elastically. This elastic asperity-
based model has been extended to the contact of rough 
curved surfaces [4], the contact of two nominally flat 
rough surfaces with misaligned asperities [5], the 
contact of rough surfaces considering the distribution 
of the radii of the asperities [6] and elliptic 

paraboloidal surfaces [7]. However, the 
aforementioned models are devoted to the elastic 
contact situation. 

Abbot and Firestone [8] introduced the basic 
plastic contact model which is known as the 
profilometric model or surface micro-geometry model. 
In this model the deformation of a rough surface 
against a smooth rigid flat is assumed to be equivalent 
to the truncation of the undeformed rough surface at its 
intersection with the flat so that the contact area is 
simply the geometrical intersection of the original 
profile. The mean contact pressure is equal to the flow 
pressure or the indentation hardness of the softer body.  
Based on the experimental results, Pullen and 
Williamson [9] proposed a volume conservation model 
for the fully plastic contact of a rough surface. 
Kucharski et al. [10] confirmed this model by the finite 
element analysis. 

In order to bridge the two extreme models, 
elastic and fully plastic, Chang et al. (CEB model) [11] 
developed an elastic-plastic contact model based on 
volume conservation of the plastically deforming 
asperities.  In the CEB model there is no transition 
regime from the elastic to the fully plastic contact 
regime while Johnson [12] showed, based on the 
analysis of the indentation of a sphere on a plane, that 
there is a long transition regime from the point of 
initial yielding to the fully plastic state. Therefore, 
Zhao et al. (ZMC model) [13] proposed a new elastic-
plastic contact model which includes this transition by 
mathematical smoothing expressions to incorporate the 
elastic and fully plastic contact parameters. Kogut and 
Etsion (KE model) [14] performed a detailed finite 
element analysis on the elastic-plastic contact of a 
sphere and a rigid flat. The empirical coefficients for 
the dimensionless relations for contact load, contact 
area and mean contact pressure as a function of contact 
interference have been provided. However, the analysis 
is limited up to the onset of the fully plastic state. A 
similar work has been done recently by Jackson and 
Green (JG model) [15].  
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 This paper presents a new elastic-plastic 
asperity contact model of asperities. Its main features 
are the modeling of the transition from elastic-plastic to 
fully plastic regime and the modeling of the mean 
contact pressure in the fully plastic regime. The results 
of subsequent asperity-contact analyses show that such 
features play an important part in the contact behavior.    
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Figure 1. Engineering surface and its asperities. 

 

 
ELASTIC CONTACT 

When contact interference  is sufficiently 
small the asperity deforms elastically. For the elastic 
contact of a flat against a sphere of radius R, according 
to the Hertz theory [3], the contact area Ae, the contact 
load Pe and the mean contact pressure pe of the asperity 
can be expressed in term of  as: 
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It was shown by the work of Tabor [16] that initial 

yield occurs when the maximum Hertz contact pressure 
reaches pm = 0.6H, or, the average contact pressure pe = 
0.4H where H is the hardness of the softer material in 
contact. For a more general representation this relation 
can be written as: 
 

HKp vm   (4) 
 
According to Chang et al. [17], based on the von Mises 
failure criteria, the value of Kv in Equation (4) is related 
to the Poisson’s ratio v as:   
 

vKv 41.0454.0   (5) 
 

Substituting Equation (4) into Equation (3) yields the 
critical interference 1 (elastic to elastic-plastic): 
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PLASTIC CONTACT 

When  is increased to another critical value 2 
at which the mean contact pressure p of the asperity 
reach its maximum, fully plastic deformation occurs. 
Most researchers have reported that this maximum 
value equals to its hardness H. However, it was shown 
recently by Jamari and Schipper [18] using a more 
accurate measurement that in the fully plastic contact 
regime the mean contact pressure reach its maximum 
and remain constant at a value lower than its hardness, 
or:   
 

Hcp hp   (7) 
 
where ch is the hardness coefficient for the fully plastic 
contact regime. 
 The contact area Ap was found by [18] the 
same as was reported by [8], and is equal to the 
geometrical intersection of the flat with the original 
undeformed profile of the asperity: 
  

RAp 2  (8) 
  
 The contact load Pp of the asperity is equal to 
the contact area multiplied by the mean contact 
pressure. Or 
 

HcRP hp 2  (9) 
 

The solid expression for the onset of fully 
plastic interference 2 (elastic-plastic to plastic) is not 
known, therefore it will be estimated. A simple 
analysis, similar to [13], is done based on the contact 
load. At  = 2, the contact load is equal to Equation 
(9). At the same time, the contact load had it been 
elastic as would be equal to Equation (2). Therefore, 
the following inequality can be established: 
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Substituting Equation (6) into Equation (11) yields, 
 

R 

Area: 627.2 x 470.4 m 
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With ch = 0.75 and Kv = 0.6, one obtains 
 

12 14   (13) 
 

The minimum value of 2 may also be further 
estimated using experimental results. The fully plastic 
regime of a half-space indented by a rigid sphere 
according to Francis [19] starts at A/Ac = 113.2 and 
according to Johnson [12] full plasticity starts at Ea/YR 
≈ 40 or P/Pc ≈ 360 where Ac and Pc is the critical 
contact area and the critical contact load, respectively, 
at the initial yield point and Y is the yield stress. Based 
on the experimental results of Chaudhri et al. [20] for 
the contact problem of a deformable sphere and a rigid 
flat, the fully plastic contact regime (as indicated by a 
constant mean contact pressure) starts at A/Ac ≈ 60 for 
phosphor-bronze and 100 for brass if A/Ac is calculated 
according to the JG model. Or in general: 
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Substituting Equations (1) and (8) into Equation (14) 
and rearranging results into: 
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ELASTIC-PLASTIC CONTACT 

In the present study the approach as used in 
the ZMC model will be utilized to analyze the elastic-
plastic contact problem of a sphere against a hard flat. 
The ZMC model employed the statistical analysis of 
spherical indentations of Francis [19] where the mean 
contact pressure in the elastic-plastic contact regime 
may be represented by a logarithmic function. By using 
the constant ch for the fully plastic contact regime and 
following the approach of ZMC, the mean contact 
pressure pep, the contact area Aep and the contact load 
Pep in the elastic-plastic contact regime are: 
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RESULTS AND DISCUSSIONS 

The experimental elastic-plastic contact data 
of Chaudhri [20] will be used for validation to illustrate 
the developed model. The results are also plotted along 
with the theoretical predictions of the CEB model, the 
ZMC model, the KE model and the JG model. 
Chaudhri [20] performed experiments on the elastic-
plastic contact of phosphor-bronze (H = 2.72 GPa, E = 
115 GPa and v = 0.35) sphere of 3.17 mm diameter in 
contact with a sapphire (H = 190 GPa, E = 430 GPa 
and v = 0.26) flat. In his experiments, the contact area 
was measured directly in the elastic and the elastic-
plastic contact regime but for the fully plastic contact 
regime the contact area was measured indirectly or 
after the load is removed. In the elastic to elastic-
plastic contact experiments, the sphere was compressed 
between a load cell and a transparent sapphire flat so 
that the contact area can be measured directly by a 
microscope.  
 Figure 2 shows the non-dimensional mean 
contact pressure p/(chH) as a function of the non-
dimensional contact area A/Ac for phosphor-bronze 
material. It can be seen from the figure that the 
proposed elastic-plastic contact model fit very well 
with the experimental results from the elastic to the 
fully plastic contact regime.  In these cases, the 
coefficient of hardness ch = 0.805 and the contact area 
constant cA = 40. The constants ch and cA are 
determined based on the experimental results. In Figure 
2, the theoretical predictions of the ZMC model, the 
KE model and the JG model predict a higher mean 
contact pressure for the contact area higher than the 
critical contact area in the onset of elastic-plastic 
regime, while the JG model predicts a lower mean 
contact pressure. The ZMC and KE model predict an 
increasing mean contact pressure as the contact area 
increases until the non-dimensional contact area value 
A/Ac = 108 and A/Ac = 220. Beyond these values the 
mean contact pressure will stay constant at the 
hardness indentation value. Instead of the indentation 
hardness parameter the JG model used the yield stress 
parameter. There is no yield stress data available, 
therefore, in the present analysis the yield stress was 
assumed to be H/2.8 [16]. The JG model predicts the 
mean contact pressure as a function of the contact area 
differently. The mean contact pressure increases as the 
contact area increases, however, for a certain value of 
the contact area the mean pressure reaches a maximum 
value and then start to decrease as the contact area 
increases. As can be seen in Figure 2 the maximum 
contact pressure of the JG model occurs at a value of 
A/Ac ≈ 70. For a relatively high value of the contact 
area the mean contact pressure can reach a value even 
lower than the CEB model. The CEB model predicts 
the mean contact pressure in the elastic-plastic and 
fully plastic contact regimes lower than the other 
models because in this model there is no transition 
regime from the elastic to fully plastic and the mean 
contact pressure is assumed pp = KvH in the fully 
plastic regime.  
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Figure 2. Non-dimensional mean contact pressure vs non-dimensional 
contact area. ○ phosphor-bronze experimental data [20]. 

 
 

Figure 3 presents the results of the non-
dimensional contact area A/Ac as a function of the non-
dimensional normal load P/Pc. As can be seen the new 
developed elastic-plastic contact model predicts the 
contact behaviour best among the others. The CEB 
model overestimates the contact area as a function of 
the contact load because the mean contact pressure 
predicted by the CEB model is lower than the actual 
one. The ZMC, KE and JG models underestimates the 
contact area as the load increases for all the 
experimental data.  
 

 

Figure 3. Non-dimensional contact area vs non-dimensional contact 
load.  ○ phosphor-bronze experimental data [20]. 

 
 
CONCLUSSIONS 

A theoretical model for the normal contact of 
elastic-plastic of a sphere against a hard flat has been 
presented. Formulae describing the contact parameters 
have been developed in order to predict the contact 
behaviour. The developed model was compared with 
published experimental and theoretical data in terms of 

the mean contact pressure, the contact area and the 
contact load. 

The developed model predicts the contact 
behaviour best among other models. In the fully plastic 
contact regime the mean contact pressure is observed 
to be lower than the indentation hardness as often 
reported. The transition from the elastic-plastic to the 
fully plastic is found depending on the material 
properties. These make substantial differences in the 
comparison with the available proposed models. 
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