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AN  ELLIPTIC ELASTIC-PLASTIC ASPERITY MICRO-CONTACT MODEL 
Jamari1) 

 
 

Abstract 

A theoretical model for the elastic-plastic contact of ellipsoid bodies is presented in this paper. Contact 
parameters, such as the mean contact pressure, the contact area and the contact load as a function of the contact 
interference are formulated and modeled in the three different contact regimes: elastic, elastic-plastic and fully plastic. 
The model introduces a new simple method to analyze the complexity of the elliptical integral by an accurate 
approximation so that the calculation can be executed very fast.  
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INTRODUCTION 

The surface textures of most of the engineering 
surfaces are oriented with the direction of the relative 
motion of cutting tools to the workpieces, see Fig. 1. 
Different processing methods will produce different 
asperity radii of curvature, and therefore different 
ellipticity ratios of the micro-contacts are formed. The 
profile of the asperities generally contains various 
curvatures for various directions.  

 

 
 

(a) 

 
(b) 

                        
Figure 1. Elliptical contact of asperities: a) before contact and b) after 

high load of spherical indenter is removed. 
 

In accordance to these facts, several models 
have  been  proposed  to  extend  the  isotropic  asperity  
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contact model into an anisotropic asperity contact 
model. Horng [1], for instance, extended the CEB [2] 
model and Jeng and Wang [3] extended the ZMC [4] 
model for the elliptical contact situation.  

Even though the results of McCool [5] showed 
that for anisotropy rough surfaces with a random 
distribution of asperity radii differ negligibly from 
those of the isotropic one, for the deterministic contact 
situation the ellipticity of the contact cannot be 
simplified, especially when studying the change of the 
micro-geometry. In this thesis the micro-geometric 
change of the surface after unloading is the main topic. 
Therefore, the elliptical contact situation will be 
considered for the analysis. 

The present study offers a new accurate elliptic 
elastic-plastic asperity contact model. An elastic-
perfectly plastic with no-strain hardening effect 
material behavior is considered. It is shown that in the 
fully plastic contact regime the mean contact pressure 
is lower than the indentation hardness as often reported 
and the transition from the elastic-plastic to the fully 
plastic state is material dependent.   

 
 
ELLIPTIC ELASTIC CONTACT 

Figure 2 shows the general situation of the 
contact between two elastic bodies. Eccentricity of the 
ellipse e is defined as: 
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where a and b denote the semi-minor and semi-major 
radius of the elliptic contact area. The mean effective 
radius Rm is represented as:  
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where Rx and Ry are the effective radii of curvature in 
principal x and y direction; subscripts 1 and 2 indicate 
body 1 and body 2, respectively. 
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Figure 2. Geometry of contraformal contact.. 
 

 
From the theory of elasticity, the maximum 

contact pressure po, the semi-major contact ellipse 
radius b and the interference of an asperity  can be 
written as [6]: 
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p is the mean contact pressure, P is the contact load, a 
is the semi-minor radius of the elliptic contact area, E 
is the effective elastic modulus and Rx and Ry are the 
effective radii of curvature as defined in Eq. (2). K(e) 
and E(e) are the complete elliptic integrals of the first 
and second kind, respectively: 
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The elastic contact area Ae and the contact load Pe can 
be expressed in terms of the contact interference  by 
combining Eqs. (3), (4) and (5): 
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Eqs. (10) and (11) contain elliptical integrals, whose 
values must be found from tables. Approximations for 
the complete elliptic integrals have been introduced, 
for example, by Reussner [7].  

The semi-minor radius of the contact area a, 
the semi-major radius of the contact area b and the 
elastic interference  are defined as [8]: 
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where ,  and , are 
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In Eqs. (15)-(17) , E(m) and K(m) are defined by: 
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where m = 1 – 12 and the curvature ratio  
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Combining Eqs. (12), (13) and (14), the contact area 
and the contact load can be presented in terms of as: 
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The mean contact pressure pe is simply expressed in 
terms of  by dividing Eq. (23) by Eq. (22): 
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Substituting pm = KvH into Eq. (24) yields the critical 
interference 1:  
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where Kv is a hardness coefficient related to the 
Poisson’s ratio v. Recently, [9] have derived Kv based 
on the von Mises shear strain energy criterion as: 
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ELLIPTIC FULLY PLASTIC CONTACT 

Based on the experimental results of a 
deformable sphere in contact with a hard flat in the 
fully plastic contact regime [10], the mean contact 
pressure is not equal to the hardness [11] but lower. 
For a more general representation the mean contact 
pressure in the fully plastic regime can be related to the 
hardness as: 
 

Hcp hp   (27) 
 
where ch is the hardness coefficient for the fully plastic 
contact regime. 

It was shown [10] that in the fully plastic 
contact regime the contact area is simply a truncation 
of the undeformed asperity geometry as was postulated 

by [12]. For the elliptical contact situation this can be 
expressed as: 
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Rearranging and substituting Eq. (28) into A = ab 
yields the contact area in the fully plastic Ap:  
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The contact load Pp is equal to the contact area 
multiplied by the mean contact pressure, or 
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The solid expression for the onset of fully plastic 
interference 2 is not known, therefore it is estimated. 
A simple analysis is done based on the contact load. At 
 = 2, the contact load is equal to Eq. (60). At the 
same time, the contact load had it been elastic as would 
be equal to Eq. (23). Therefore, the following 
inequality can be established: 
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Eq. (31) can be rewritten as: 
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Substituting Eq. (15) to (21) and Eq. (25) into Eq. (32) 
yields: 
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The minimum value of 2 may also be further 

estimated using experimental results. The fully plastic 
regime of a half-space indented by a rigid sphere 
according to Francis [13], starts at A/Ac = 113.2 and 
according to Johnson [6] full plasticity starts at Ea/YR 
≈ 40 or P/Pc ≈ 360. Based on the experimental results 
of Chaudhri et al. [14] and Tabor [5] for the contact 
problem of a deformable sphere and a rigid flat, the 
fully plastic contact regime (as indicated by a constant 
mean contact pressure) starts at A/Ac ≈ 40 for 
phosphor-bronze, 90 for brass and 160 for steel. Or in 
general: 
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Substituting Eqs. (22) and (29) into Eq. (34) and 
rearranging results: 
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Using Eqs. (15) - (21) and substituting into Eq. (35) 
yields: 
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Fig. 3 shows the plot of the onset of fully plastic 
contact as a function of the ellipticity ratio  based on 
Eq. (3.63). It can be seen that for the range of of0.55 
to 1 2/1 is almost constant at a value of about 45 for 
cA = 90.  
 
 

 
 

Figure 3. Onset of full plasticity as a function of the ellipticity ratio 
 of Equation (36). 

 
 
ELLIPTIC ELASTIC-PLASTIC CONTACT 

Based on a statistical analysis of spherical 
indentations, Francis [13] presented the dependence of 
the mean contact pressure pep on  for the elastic-
plastic contact situation, which may be analogously 
characterized by a logarithmic function, as follows:  
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where a1 and a2 are two constants to be determined, 
and r is the circular contact radius. Since the area of 
elliptical contact A = ab, the elliptical contact radius 
can be represented as (ab)1/2. Substituting this relation 
into Eq. (37) results: 
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At the critical interference 1, Eq. (38) can be 
expressed in the form:  
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and at the inception of full plasticity 2: 
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By simultaneously solving Eqs. (39) and (40), the 
parameters a1 and a2 can be determined in terms of the 
properties of the contact: 
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Substituting Eqs. (41) and (42) into (37) gives the 
mean contact pressure in the elastic-plastic deformation 
region as follows: 
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Zhao et al. [4] proposed a relation of the 

elastic-plastic contact area as a function of . The 
relation was modeled by using a polynomial expression 
to join the expression of the contact area at  = 1 and 
 = 2 smoothly. A ‘template’ cubic polynomial 
function is defined as: 
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By this function all four boundary conditions: Aep = Ae, 
dAep/d = dAe/d at  = 1 and Aep = Ap, dAep/d = 
dAp/d at  = 2 are satisfied. The transformation 
involves translating and scaling  so that  = 1 and  
= 2 correspond to x = 0 and x = 1, respectively, where: 
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The expression of Aep after scaling is: 
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Substituting Eqs. (22) and (29) into Eq. (46) gives the 
relation between the elastic-plastic contact area Aep in 
terms of contact interference  as: 
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The elastic-plastic contact load Pep is defined using 
Eqs. (43) and (47), Pep = pepAep, as: 
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CONCLUSIONS 

A theoretical model for the normal contact of 
elastic-plastic of ellipsoid bodies has been presented. In 
order to predict the contact behaviour formulae 
describing the contact parameters have been 
developed.  

The model introduces a new simple method to 
analyze the complexity of the elliptical contact 
situation so that the cost of the calculation time can be 
reduced dramatically. 
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