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Abstract 

 

The human computer interface is a method of interaction between a person and a computer that utilizes a 

human interface device. One example of this is using hand movements to control a computer pointer, which 

produces a unique electromyography signal for each basic movement direction (up, down, right, and left). 

This project utilized an artificial neural network with a structure of seven inputs, ten hidden layer nodes, and 

four outputs to classify electromyography signals from the brachioradialis and flexor carpum ulnaris muscles 

into four basic movement categories within an Arduino Uno. The artificial neural network was trained offline 

using a high-capacity machine for efficiency since the Arduino Uno has low raw processing capability. The 

Sparkfun Pro Micro's HID function and the mouse.move() library were used to translate the classification 

results into pointer movement on a PC. The classification rate for the prerequisites setting resulted in an 

average of 93.7375%, with individual classification rates of 96.55% for up movement, 93.4% for down 

movement, 90.85% for right movement, and 91.95% for left movement. 
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1. Introduction 

The muscle is an active movement tool in the human body's musculoskeletal system. The muscle has the ability to 

move passive movement tools in the form of bones or a framework that is adjusted by the placement of the muscle on the 

skeletal system and the joint system that supports the direction of movement that can be performed by the muscle. These 

movement capabilities include rotational movements, two-way movements, four-way movements, and so on [1]. In every 

muscle activity, especially movement activity, the muscle is influenced and produces bioelectric activity that spreads 

from nerves to muscles. This electrical activity can be recorded through an electromyography or EMG device, which will 

represent the electrical activity signal of the muscle in the form of a graph or signal of electrical activity over time. In 

each type of muscle movement, the resulting electrical activity will have different characteristics even though these 

movements occur in the same muscle [2]. 

One of the latest studies and research on EMG signal classification is the research by Ibrahimy et al in 2013 [3]. 

Ibrahimy in his research explains that a hand gesture in the upward, downward, right, and left movements has a specific 

EMG signal pattern or characteristic (with a single channel) that can be classified using an artificial neural network. 

Studies to make EMG signals into commands on a PC have been around since the early 1990s to 2000s, one of which 

was done by Barreto et al in 2000 [4]. In this research, Barreto et al used an "if" function on the EMG signal. This function 

will move the pointer if the recorded EMG signal on a specific electrode has exceeded the threshold set by the user 

beforehand. The other research on the two things mentioned above (using an artificial neural network as a translator of 

EMG signals into commands on a PC) has been conducted by Camilo Alexis Silva in 2014 [5]. The research used the 

same mechanism as used in Ibrahimy's research in 2013 [3], but with the output being a command on a PC (with the same 

activation mechanism as in Barreto et al's research (2000) [4]). Silva's research used an application inside a PC as a 

translator and command giver in the form of a pointer movement on a PC. 

Along with the results of studies and research on EMG classification technology, the author is motivated to develop 

a device that can translate the classification results of movement directions in EMG signals into a command on the 

operating system of a PC. The device uses a human-computer interface mechanism based on electromyography signals. 

The device can be used to help or support computer operations for some users who do not have normal human capabilities 

in providing input commands on a PC, such as users who have movement disabilities in their upper extremities, especially 

fingers and hands. The main mechanism of the human-computer interface based on electromyography is the recording 

and translation of muscle signals in body movement parts. The muscle signal recorded by EMG can then be translated 

into a command to move a pointer on a PC operating system and can also provide specific commands such as inputting 

letters and numbers on a PC. In addition to requiring good EMG recording, this translation also requires an output signal 

translator module from EMG (in the form of a microcontroller) which will then provide simple on/off commands or 

movement directions on the computer interface that are appropriate and in line with what the user wants [3]. The muscles 

that will be recorded for their EMG signals as input to the human-computer interface in this study are the arm muscles 
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that have the capability to move the arm in four different directions (up, down, right, and left). These muscles are the 

brachioradialis and flexor carpi ulnaris [6]. The different bioelectric signal (EMG) activities in the four directions of 

muscle movement can be used as the basis for driving a computer interface such as a pointer, and the combination of the 

four directions of movement can be used as a specific command on the computer [5]. To obtain the EMG signal data from 

these muscles, an electromyography system is used in this study, consisting of a single-channel electrode, an Arduino 

Uno with an EMG shield, and a PC. To translate these EMG signals, an algorithm is needed to convert the EMG signals 

into digital signals that can be read by a PC as a command in the interfacing process. The module used in this study is an 

Arduino that is programmed using Microsoft Visual Studio 2013 (using Visual C# language). Arduino itself is a 

microcontroller that can receive input from the environment and can provide output to a device, such as an input to the 

PC interface in this study. By converting the EMG signal into digital data and then using a classification algorithm based 

on an artificial neural network in the embedded program embedded in the Arduino, a command that can be read by the 

operating system of a PC can be obtained. 

The embedded program installed in the Arduino uses an artificial neural network algorithm in the interpretation of 

the direction of movement of the arm. By extracting the features contained in the recorded EMG signals and determining 

several outputs such as movement up, down, right, and left, a command can be created that can translate the characteristics 

of the EMG signal in each direction of arm movement into a command on the PC interface, such as the movement of the 

pointer. The artificial neural network parameters embedded in the Arduino program have previously been trained on a 

machine with sufficient capabilities, such as a PC, so the Arduino module only serves as a muscle signal recording and 

classification module.  

The result of this study is a universal module that can translate the EMG signals of four-directional hand muscle 

movement (up, down, right, and left) as input to the PC interface. This final result can also be further developed into a 

robot arm, machine, and so on (for the development of artificial prostheses, and others) especially for neurorehabilitation 

purposes [7]–[10].  

 

2. Materials and Methods 

2.1 Device Block Diagram 

This research can be broadly divided into two stages, each of which requires a different device configuration. The 

first stage involves preparing the device, such as acquiring EMG signal data. The device used during this stage is 

illustrated in the following diagram: 
+

-

GND

Data tersimpan pada file 
format LOG(N).csv

A

B C

D

 
Figure 1.  Schematic design of the device for the recording stage 

 

In the second stage, the device functions as a translator for the EMG signal data and as an input device for the PC. 

The workflow of the device and the explanation of the usage stage can be found in Appendix 2. The block diagram 

configuration of the device is illustrated in the following diagram: 
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Figure 2 Schematic design of the device for the implementation stage. 

 

2.2 Artificial Neural Network Architecture 

In this study, the type of ANN training used is Backpropagation with the Levenberg-Marquardt, Scaled Conjugate 

Gradient and Normal Backpropagation as the optimization algorithms [3]. According to Ibrahimy et al. (2013), the best 

architecture that can be embedded in a microcontroller uses seven inputs in the form of extracted features from EMG 

signals, ten hidden layer nodes containing the tansig equation (hyperbolic tangent sigmoid transfer function), and an 

output layer containing the purelin equation (linear transfer function). The hyperbolic tangent sigmoid transfer function 

(tansig(n)) has the following formula and graph (mathwork.com, 2015): 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) = (
2

1 + 𝑒−2×𝑛
) − 1 

On the other hand, the linear transfer function (purelin(n)) has the following formula and graph (mathwork.com, 

2015): 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑛) = 𝑛 

The ANN architecture used in this study is shown in Figure 3.  

 
Figure 3. ANN with 7 inputs Ibrahimy et. al. (2013) [3] 

 

Additionally, the ANN architecture used in Camilo Silva's 2014 [5] study on EMG classification, which inputs the 

raw EMG signal into the neural network without any feature extraction, is also used for comparison. The second 

architecture has a schematic as follows (with a reduced number of inputs adjusted to the capabilities of the Arduino Uno): 
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Figure 4. ANN with 20 inputs using raw EMG signals (Silva, 2014) [5]. 

 

Figure 4. shows the ANN architecture to be embedded in the Arduino Uno. The difference between the two ANN 

structures lies in the number and type of inputs used. In the first architecture, seven inputs are used, each of which is a 

feature that has been extracted from a signal (described in the next subsection). In contrast, the second architecture has 

20 inputs, each of which represents the magnitude of the signal at 20 different positions (the 20 inputs form an EMG 

signal graph). 

 

2.3 EMG Data Recording 

In this study, data collection of EMG signals was conducted on one to six randomly selected individuals from among 

undergraduate students in the field of Biomedical Engineering (aged 18-22 years). Up to 10 data acquisitions were 

performed for each sample. The data acquisition points on the brachioradialis and flexor carpi ulnaris muscles, as well as 

the wrist as a reference point (as shown in Figure 5.), were further evaluated to determine if they had the same signal 

characteristics for each movement. 

 
Figure 5. The placement points of the EMG electrodes are indicated in red for the first acquisition point (flexor 

carpum ulnaris), purple for the second acquisition point (brachioradialis), and green for the reference point [3], [11]. 

 

Subsequently, with the activation of the data recording function in the program, volunteer subjects were instructed 

to move their hands according to the given commands. The recorded data was then saved on a PC in the form of digital 

signals (consisting of data Xn = signal amplitude at n and N = length of the recorded digital signal), which were then 

subjected to feature extraction. The recorded EMG signals were generated by performing hand gestures in several 

directions, namely: up, down, right, and left. The gesture shapes that were classified are: radial deviation was used for 

upward movement, ulnar deviation for downward movement, supination for rightward movement, and pronation for 

leftward movement [12]. 

 

2.4 EMG Feature Extraction 

According to the previously planned ANN architecture, there are seven features extracted from the recorded EMG 

signal. The extracted features along with their respective equations (Mean Average Values, Root Mean Squares, Variance, 

Standard Deviations, Wavelength, Zero Crossing, Slope Sign Change) are as follows [3], [13]: 

𝑀𝐴𝑉 =
1

𝑁
∑ |

𝑁

𝑛=1

𝑥𝑛2|    𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑛

2

𝑁

𝑛=1

    𝑉𝐴𝑅 =
1

𝑁
∑(𝑥𝑛 − �̅�)2

𝑁

𝑛=1

    𝑆𝐷 = √
1

𝑁 − 1
∑(𝑥𝑛 − �̅�)2

𝑁

𝑛=1

 

𝑊𝐿 =
1

𝑁
∑ |𝑥𝑛+1 − 𝑥𝑛|𝑁−1

𝑛=1      𝑍𝐶 = ∑ [𝑠𝑔𝑛[(𝑥𝑛 × 𝑥𝑛+1) ∩ |𝑥𝑛 − 𝑥𝑛+1|] ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑]𝑁−1
𝑛=1  

𝑆𝑆𝐶 = ∑[𝑓[(𝑥𝑛 × 𝑥𝑛+1) × (𝑥𝑛 − 𝑥𝑛+1)]]

𝑁−1

𝑛=1
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2.5 ANN Training 

The input signals are fed into the ANNs [14], and 50 sets of feature data for each type of EMG signal (up, down, 

right, and left movements) are processed through the network architecture equations to produce an output matrix that 

approximates the values in the Table 1. 

 

Table 1 ANN Output Matrix 

 Up Down Right Left 

Matrix 

Target 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

 

To improve the efficiency of the training process and avoid overfitting, the data sets are divided into 90% for training 

and 10% for validation. Two stop criteria are given: the training process will stop when the error percentage is less than 

or equal to 0.001 (using the MSE parameter) or has reached 1000 epochs in one cycle, and when the error resulting from 

the validation data input exceeds 0.15 (using the MSE parameter) [15]. 

 

2.6 Implementation and Error Rate Calculation 

At this stage, the results of the ANN embedded in the Arduino Uno will be used as input matrices for up, down, 

right, and left movements on the Sparkfun Pro Micro. The Sparkfun Pro Micro will then translate these matrices into 

pointer movement commands based on the direction of the matrix. Error calculation in this mechanism is divided into 

two parts: offline processing, by feeding previously recorded data to the ANN architecture, and online processing, by 

recording EMG signals and classifying the results into an output on the PC. Online testing used pointer movement on the 

PC to evaluate the classification results. To determine the amount of error in the online test, a large pointer movement 

distance calculator application was used. The test results were then analyzed for the deviation in each movement by 

examining the coordinates before and after the movement, with the control value being the initial coordinates plus 100 

pixels (according to the direction of hand gesture). Additionally, the amount of time taken to reach 100 pixels was also 

shown to evaluate the implementation performance. 

 

3. Results and Discussion 

3.1 ANN Model Selection 

Following the research methodology, a total of 210 sets of EMG signals were recorded using a recording circuit 

with a sampling frequency of approximately 100 Hz. The recorded signals were divided into four classes corresponding 

to upward, downward, rightward, and leftward hand movements. The recorded data were not calibrated into millivolt 

units but were kept in the range of the DAC on the Arduino Uno (0-1023), to facilitate feature extraction and classification 

by the artificial neural network. This study focuses on implementation rather than monitoring the EMG signal values. 

With the extracted features mentioned above, both types of data sets were used as input for each neural network structure 

to perform the training mechanism to obtain neural networks with weight values that can classify in real-time during 

implementation. To be easily readable by the neural network, data from all extracted features were normalized with a 

range of -1 to 1. With the results of feature extraction as described above, both types of datasets are used as inputs to each 

neural network to undergo training mechanisms to obtain neural networks with weight values that can classify in real-

time during implementation. As per the research methodology described, there are two neural network structures, the first 

of which has seven inputs, ten hidden nodes, and four outputs, while the second has twenty inputs, ten hidden nodes, and 

four outputs. The output results in a matrix with a range of values from -1 to 1. The training mechanism uses a Signal 

Classification application. The training algorithm used is Levenberg Marquardt with training parameters such as rate set 

to default values. To compare the performance of the training algorithms, the use of normal backpropagation and scaled 

conjugate gradient algorithms is also applied. By comparing the performance results, the optimal variable for use as the 

training parameter for the neural network can be determined. Table 2. presents the training results in terms of error and 

number of epochs, along with variables such as number of inputs and type of training (each type of training repeated up 

to three times). 
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Table 2. The Training Performance with Several Parameters 

No N Input 
Training 

Method 
Validation Error 

Best 

Epoch 

Training 

Time 

1 7 

Scaled 

Conjugate 

Gradient 

0.0785420130510243 97 215ms 

2 7 
Levenberg 

Marquardt 
0.046550741454159 30 2673ms 

3 7 
Normal 

Backpro 

Validation not satisfied, stopped 

at E= 4.99782709062222E+108 
- - 

4 20 

Scaled 

Conjugate 

Gradient 

0.024576991655724 79 244ms 

5 20 
Levenberg 

Marquardt 
0.0517344237565072 10 3704ms 

6 20 
Normal 

Backpro 

Validation not satisfied, stopped 

at E= 1.69617971751728E+168 
- - 

 

Based on the training results shown in the above table, it is evident that the use of normal backpropagation method 

(backpropagation method with weight updates using error gradient) requires more than 1000 epochs to achieve good 

results. The best performance is achieved with the Levenberg-Marquardt method, which requires relatively fewer 

iterations to reach a training data MSE margin below 0.001 or the best validation data MSE. The table also shows that the 

second neural network structure provides excellent performance, especially with the Levenberg Marquardt training 

method, which requires at least less than 50 iterations to reach the minimum MSE. The parameters resulting from the 

previous training process are then saved for each type and repetition of the training method. The saved parameters from 

the previous subsection are then tested on several EMG signals outside of the training and validation datasets. This offline 

test is performed using the Offline Test application described in methodology. The test results are summarized in the 

following Table 3. (the results with the Normal Backpropagation method are not used because they do not meet the 

minimum validation error requirements). 

Tabel 3. Offline Implementation Test 

No N Input 
Training 

Method 
MSE 

Classification 

Rate 

1 7 

Scaled 

Conjugate 

Gradient 

0.188383833127176 68.75% 

2 7 
Levenberg 

Marquardt 
0.311765581662042 56.25% 

3 20 

Scaled 

Conjugate 

Gradient 

0.246904404051887 81.25% 

4 20 
Levenberg 

Marquardt 
0.288058281063636 75% 

 

The table above reveals two profiles or sets of training parameters that achieved the best classification percentage 

(above 70%). The first profile is Scaled Conjugate Gradient (20 inputs) with a percentage of 81.25%, while the second is 

Levenberg Marquardt (20 inputs) with a percentage of 75%. This finding also suggests that the second neural network 

structure (20 inputs, 10 hidden, and 4 outputs) [5] resulted in better classification performance. Based on these offline test 

results, both profiles of saved parameters were chosen for further real-time testing. 

 

3.2 Online Implementation Test Results 

The online test results can be seen in Table 4. The data were taken by calculating the deviations of pointer movements 

after the gestures are conducted. 

Tabel 4 Real-Time Implementation Test Results 

No Gestures ANN Profiles 
X Coordinate 

Deviation Rates 

Y Coordinate 

Deviation Rates 

1 Atas 
Scaled Conjugate 

Gradient (20 input) 
4.2 6.4 
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2 Bawah 
Scaled Conjugate 

Gradient (20 input) 
3.5 4.3 

3 Kanan 
Scaled Conjugate 

Gradient (20 input) 
15.9 6.9 

4 Kiri 
Scaled Conjugate 

Gradient (20 input) 
11.5 8.8 

5 Atas 
Levenberg Marquardt 

(20 input) 
3.3 3.6 

6 Bawah 
Levenberg Marquardt 

(20 input) 
6.5 6.7 

7 Kanan 
Levenberg Marquardt 

(20 input) 
11 7.3 

8 Kiri 
Levenberg Marquardt 

(20 input) 
10 6.1 

 

The calculation above reveals that the classification rate for profile 1 is 91.7625%, and for profile 2 is 93.7375%. 

For each gesture: with success rates of 96.55% for upward direction, 93.4% for downward direction, 90.85% for rightward 

direction, and 91.95% for leftward direction. 

 

4. Conclusion 

The algorithm used to activate the electromyography-based computer operation function is a neural network 

classification algorithm with twenty inputs, ten nodes in the hidden layer, and four outputs representing basic movement 

directions (up, down, right, and left). The neural network was previously trained using the Levenberg-Marquardt and 

Scaled Conjugate Gradient methods. During implementation, the algorithms achieve classification success rates of 

93.7375%, with success rates of 96.55% for upward movement, 93.4% for downward movement, 90.85% for rightward 

movement, and 91.95% for leftward movement. 
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