
Tersedia online di: http://ejournal.undip.ac.id/index.php/teknik

TEKNIK, 43 (2), 2022, 190-201

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

Human Action Recognition (HAR) Classification Using

MediaPipe and Long Short-Term Memory (LSTM)

Ichsan Arsyi Putra *, Oky Dwi Nurhayati , Dania Eridani

Departemen Teknik Komputer Fakultas Teknik, Universitas Diponegoro,

Jl. Prof. Soedarto, S.H., Kampus UNDIP Tembalang, Semarang, Indonesia 50275

Abstract

Human Action Recognition is an important research topic in Machine Learning and Computer Vision

domains. One of the proposed methods is a combination of MediaPipe library and Long Short-Term

Memory concerning the testing accuracy and training duration as indicators to evaluate the model

performance. This research tried to adapt proposed LSTM models to implement HAR with image features

extracted by MediaPipe library. There would be a comparison between LSTM models based on their testing

accuracy and training duration. This research was conducted under OSEMN methods (Obtain, Scrub,

Explore, Model, and iNterpret). The dataset was preprocessed Weizmann dataset with data preprocessing

and data augmentation implementations. Video features extracted by MediaPipe: Pose was used in training

and validation processes on neural network models focusing on Long Short-Term Memory layers. The

processes were finished by model performance evaluation based on confusion matrices interpretation and

calculations of accuracy, error rate, precision, recall, and F1score. This research yielded seven LSTM

model variants with the highest testing accuracy at 82%, taking 10 minutes and 50 seconds of training

duration.

Keywords: classification; deep learning; human action recognition; mediapipe; long short-term memory

1. Introduction

 The development of computer technology in

machine learning and computer vision domain is still far

from being done. The uniqueness of various imagery data

from various sources becomes interesting research

material. Information gathering from images can be done

through Human Action Recognition (HAR). HAR is an

important issue due to its various implementations, e.g.,

surveillance videos, human-machine interaction, and

other ways of information-gathering from videos (Cheng

et al., 2015). A proposed method used a combination of

MediaPipe as image features detector and extractor along

with Long Short-Term Memory (LSTM) as an identifier

or classifier. This combination can be found in Hand

Gesture Recognition (HGR) research (Agrawal et al.,

2022; Ghosh, 2021; Lakkapragada et al., 2022; Moetia

Putri & Fuadi, 2022). HAR can also be conducted with

similar methods (Daniel Tanugraha et al., 2022; Zhang et

al., 2017).

Zhang had done previous research in HAR (Zhang

et al. 2017) used NTU, SBU, and SYSU datasets

consisting of sequences of skeleton 3D data. These data

were used as input for LSTM model constructed by 3

LSTM layers with a Fully-connected layer as a classifier.

This implementation results in accuracies of 87.6%,

97.2%, and 77.5% for NTU, SBU, and SYSU datasets,

respectively.

Ghosh conducted research with a classification in

5 classes from a dataset of 126 videos (Ghosh, 2021). The

video features were extracted by MediaPipe: Hands with

ignored z-axis. The LSTM architecture consisted of 2

LSTM layers, 2 dropout layers, 1 flatten layer, and 1

dense layer. This research results in an accuracy of 94%.

With a combination of one layer for each LSTM

layer, dropout layer, and dense layer, this research

(Lakkapragada et al., 2022) could obtain a model with a

testing accuracy of 69.55%. The input data was gathered

from the extraction of the Self-Stimulatory Behavior

Dataset (SSBD) with MediaPipe.

Research in Sports Action Recognition Based on

Long Short-Term Memory Using MediaPipe (Daniel

Tanugraha et al., 2022) showed that their LSTM model

--

*) Corresponding author.

E-mail: ichsan.x.an@outlook.co.id

TEKNIK, 43 (2), 2022, 191

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

needed a training time of 10 to 12 minutes. This model

used RNN for Human Activity Recognition-2D dataset

for its training phase. The validation accuracies in T-

Pose, Warrior II Pose, and Tree-Pose were obtained at

100%, 85%, and 80%, respectively.

Agrawal et al. (2022) did research in HGR

consisting of 10 gestures using MediaPipe: Holistic. The

model which implemented 4 LSTM layers and 3 Dense

layers could result in testing and validation accuracies of

90%.

Another HGR research using LSTM was

conducted by Putri et al. (2022). They used the BISINDO

gesture dataset consisting of 30 vocabularies. The gesture

was extracted with MediaPipe: Holistic in advance before

it was set as input data for 3 variants of LSTM model, i.e.,

1 layer LSTM, 2 layers LSTM, and Bidirectional LSTM.

The highest accuracy reached 94%, 97%, and 96% for 1

layer LSTM, 2 layers LSTM, and Bidirectional LSTM,

respectively.

Those researches showed that detection accuracy

was the primary indicator in model evaluation. However,

the training time as an essential factor in Deep Learning

(Sarker, 2021) model construction was shown only in

(Daniel Tanugraha et al., 2022). Other research in Deep

Learning showed that the accuracy value and training

time could be used to determine the best model (An et al.,

2019; Codreanu et al., 2017; Tan & Le, 2021).

Based on this condition, this research tried to adapt

the LSTM model (Ghosh, 2021; Lakkapragada et al.,

2022; Zhang et al., 2017) for HAR implementation with

landmarks data extracted with MediaPipe library (Google

LLC, 2020). We also made an accuracy and training time

comparison between those models and our self-

constructed models based on parameters recommended

by research (Reimers & Gurevych, 2017).

2. Research Method

2.1 Research Tools Specification

This research was conducted in a Lenovo Ideapad

100-14IBD laptop series for hardware powered with Intel

Core i35005U processor, Intel HD Graphics 5500 VGA,

and 6 GB of RAM. In the software aspect, this research

implemented in Microsoft Windows 10 Pro 64-bit

operating system, Jupyter Notebook 6.4.5 Anaconda 3 for

IDE, python 3.9 programming language, and Kdenlive

21.12.3 as video editing application.

2.2 Research Workflow

The workflow for this research adopted the

OSEMN model. OSEMN (read 'awesome') is a model or

a method in data science introduced by Masson and

Wiggins (Mason & Wiggins, 2010). OSEMN consisted of

chronological steps called Obtain, Scrub, Explore,

Model, and iNterpret. Since the model scheme of

OSEMN used to be implemented with a customized

sequence (Janssens, 2021), the research method followed

the workflow as shown in Figure 1.

2.2.1 Obtain-1

The dataset used in this research was Weizmann

dataset (Gorelick et al., 2007) which was directly

downloaded from its official website at

https://www.wisdom.weizmann.ac.il/~vision/SpaceTime

Actions.html, in the “Classification Database” section. It

has 336 MB of compressed size or 454 MB in

uncompressed form.

The weizmann dataset consists of 10 classes with

a total of 93 videos. Each class has 6 videos (jack, jump,

pjump, side, wave2, wave1, and bend class) or 10 videos

(run, walk, and skip class). Those videos are formatted in

AVI with 1 to 3 seconds of duration, 25 fps of framerate,

180 × 144 pixels of frame size, and 9 persons of actors.

2.2.2 Scrub-1

As a prerequisite, the dataset used in this research

was gathered from 25 former frames of each video.

However, there was a video titled “ira_bend.avi”

unfulfilling mentioned prerequisite, hench the

preprocessing technique (Minh et al., 2018) called

features selection (Beniwal et al., 2012) are applied to that

video. This technique included a duration cutting

implementation on 20 former frames, so a representative

video was obtained compared to its class. Figure 2 shows

an example of the duration cutting technique.

The Weizmann dataset was known for having 10

classes with 9 to 10 videos each. Due to the small-sized

dataset (Wang et al., 2017) for 60:20:20 division ratio and

the imbalanced data distribution, this research also

implemented data augmentation techniques to the dataset

through Kdenlive video editor. These techniques were

Fig. 1. Research workflow.

Fig. 2. The first second (25 frames) of “ira_bend.avi”

video before (left figure) and after (right figure)

duration cutting.

https://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
https://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

TEKNIK, 43 (2), 2022, 192

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

mirroring, zooming, translation, and their combinations

(Verdhan, 2021). All videos were augmented 1, 2, or 4

times. Table 1 shows an example of data augmentation

processes.

2.2.3 Explore-1

After Scrub-1 was done, the dataset had 450 videos

(45 videos per class) with 461 MB of data size. Since the

data ratio was divided into 60 : 20 : 20 for training :

validation : testing, the training data consisted of 270

videos (27 videos per class), the validation data consisted

of 90 videos (9 videos per class), and the testing data had

the same number of videos as the validation data that was

90 videos (9 videos per class).

2.2.4 Obtain-2

In Obtain-2, there were detection processes and

video feature extraction using MediaPipe: Pose library. The

detection phase was done by first converting video frames

from BGR to RGB format using OpenCV (Bradski, 2000).

These frames were then used for landmarks detection by

MediaPipe.

The gathered data were 33 points of landmarks or

key points with x, y, and z values in each point multiplied

by the number of videos. Those data were saved in 25

NumPy array formatted files (.npy) for each video. Figure

3 illustrates the process of Obtain-2.

2.2.5 Scrub-2

In this step, the data obtained from Obtain-2 were

labeled with a class code for every 25 frames of data

(Amershi et al., 2019). The class codes mentioned ranged

from 0 to 9 for the run, walk, skip, jack, jump, pjump, side,

wave2, wave1, and bend, respectively.

2.2.6 Explore-2

The data obtained from Scrub-2 were

multidimensional arrays for each training, validation, and

testing data. Those data were distinguished into 2 groups,

namely X and y. Table 2 shows the array dimension of data

X. Meanwhile, data y had the array dimension, as shown

in Table 3 below.

2.2.7 Model

The neural network model design was adapted from

4 LSTM models used in research (Ghosh, 2021;

Lakkapragada et al., 2022; Zhang et al., 2017). We

determined those models as VA-LSTTM-SYSU (Zhang et

al., 2017), VA-LSTM-SBU (Zhang et al., 2017), LSTM-

PASL (Ghosh, 2021), and LSTM-AHM (Lakkapragada et

al., 2022).

a. VA-LSTM-SYSU

2 LSTM layers constructed this model with 100

units of neurons and 3 Dropout layers with a 50% rate. The

Adam optimizer was used with a 0.005 learning rate and

Gradient Clipping techniques by clipnorm parameter

setting (Keras, n.d.-a). This model was trained with 64

batches size in 200 epochs. The architecture of VA-LSTM-

SYSU can be seen in Figure 4.

b. VA-LSTM-SBU

The model of VA-LSTM-SBU had a similar

structure to VA-LSTM-SYSU with neuron number

adjustment to 50 and batch size to 8. VA-LSTM-SBU

architecture is shown in Figure 5.

c. LSTM-PASL

LSTM-PASL model constructed by 2 LSTM layers

with 256 and 128 neurons for each layer. This model

implemented 2 dropout layers with a 20% rate. The training

process was done by Adam optimizer with a 0.0001

Table 1. An example of data augmentation processes.

Original

Video

Data Augmentation Process

Video

#1

Video

#2

Video

#3

Video

#4

Zoom-

ing:

150%

Trans-

lation:

(x,y) =

(0,+20)

Zoom-

ing:

150%

Trans-

lation:

(x,y) =

(+45,+

20)

Zoom-

ing:

150%

Trans-

lation:

(x,y) =

(+45,+

20)

Mirror-

ring:

hori-

zontal

Zoom-

ing:

hori-

zontal

Fig. 3. An illustration of the features extraction process

using MediaPipe: Pose library.

Table 2. The array dimension of data X.

Data
Dimension

Video Frame Key points

X_train 270 25 132

X_valid 90 25 132

X_test 90 25 132

Table 3. The array dimension of data y

Data
Dimension

Video Class

y_train 270 10

y_valid 90 10

y_test 90 10

TEKNIK, 43 (2), 2022, 193

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

learning rate, 32 batches size, and 200 epochs. Figure 6

shows the architecture of LSTM-PASL.

d. LSTM-AHM

LSTM-AHM had only an LSTM layer with 64

units of neurons pairing with a 30% rated Dropout layer.

This model would be trained with Adam optimizer,

Fig. 4. VA-LSTM-SYSU architecture.

Fig. 5. VA-LSTM-SBU architecture.

Fig. 6. LSTM-PASL architecture.

Fig. 7. LSTM-AHM architecture.

Fig. 8. Model 1 architecture.

Fig. 9. Model 2 architecture.

Fig. 10. Model 3 architecture.

TEKNIK, 43 (2), 2022, 194

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

learning rate = 0.01, batch size = 32, and 200 epochs. This

model architecture can be seen in Figure 7.

Furthermore, we also designed 3 variants of

models as a comparison to the former models. Those

models had several same hyperparameters configuration,

namely, (25, 132) for input shape, Nadam optimizer,

categorical crossentropy for the loss function, categorical

accuracy metrics, 200 epochs, and True value for the

shuffle.

In addition to initialized hyperparameters above,

the models were constructed with some

recommendations, such as keeping LSTM layers in

minimum number, the usage of dropout (especially a

variational dropout), and small batch size (Reimers &

Gurevych, 2017). To optimize the models, this research

used Model Checkpoint (Keras, n.d.-b) function in the

training process to save the best model weight for each

epoch based on the value of validation categorical

accuracy.

Referring to the recommendations above, three

neural network models were designed.

a. Model 1

This model contained 2 LSTM layers, 2 Dropout

layers, and 2 Dense layers. The dropout layers were

positioned after each LSTM layer to prevent the

overfitting condition probability (McCullum, 2020).

Figure 8 shows the configurations of Model 1 architecture

with its hyperparameters. Other hyperparameter

configurations in Model 1 were 0.0001 for learning rate

and 4 for batch size.

b. Model 2

Figure 9 shows Model 2 constructed of 2 LSTM

layers and 2 Dense layers. The dropout values were

configured as variational dropout by the

recurrent_dropout variable. Other hyperparameters

configured in Model 2 were 0.000075 for learning rate

and 2 for batch size.

c. Model 3

In Model 3, the architecture was constructed

similar to Model 2’s yet used a different activation

function in its LSTM layers, that was TanH (default

value). The recurrent_dropout value also was reduced to

0.2. Figure 10 shows the architecture of Model 3 followed

by its hyperparameters. Other hyperparameters were left

unchanged with the same value as Model 2’s.

2.2.8 Interpret

The interpretation was conducted by comparing

the model performance based on accuracy and loss value

from the training, validation, and testing process. A

confusion matrix method was used to evaluate the testing

process (Xu et al., 2020), followed by the calculation of

accuracy, error rate, precision, and recall F1score. Each

calculation implemented micro-averaging and macro-

averaging methods for multi-class classification

problems (Chinchor, 1992; Sokolova & Lapalme, 2009).

After those processes, this research was continued

with a simple prediction implementation in a demo video.

The demo video had 640 x 360 pixels of resolution and

25 fps of framerate. An actor acted the actions in the demo

video with 2 variations for each action. Each variation of

action was performed in 2 seconds.

Each trained model would be implemented

sequentially, and then the results were predicted based on

key points values in the latest 25 frames of video. The

changes in detection would be recorded and interpreted in

the form of narrational text.

2.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a variety of

Recurrent Neural Networks (RNN) designed for a

temporal-dependent model with better accuracy than

traditional RRN (Sak et al., 2014). LSTM was first

introduced by Hochreiter and Schmidhuber (Hochreiter

& Schmidhuber, 1997) to address error back-flow

problems, i.e., blow up or vanish on the backpropagation

method.

The visual of the LSTM algorithm is illustrated in

Figure 11. In mathematic form, LSTM has a calculation

sequence involving forget gate (𝑓𝑡), input gate (𝑖𝑡), new

value that can be added to the cell state (�̃�𝑡), cell state

(𝐶𝑡), output gate (𝑜𝑡), and output order-t (ℎ𝑡). Firstly, 𝑓𝑡
was calculated with Equation 1.

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1)

with 𝜎 is a sigmoid function, 𝑊𝑓 is weight value for 𝑓𝑡,

ℎ𝑡−1 is output value before order-t, 𝑥𝑡 is input value in

order-t, and 𝑏𝑓 is bias value for 𝑓𝑡.

After 𝑓𝑡 calculation, the data are processed with 𝑖𝑡
through Equation 2 and �̃�𝑡 in Equation 3.

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2)

 �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3)

with 𝑊𝑖 is weight value for 𝑖𝑡, 𝑊𝐶 is weight value for �̃�𝑡,
𝑏𝑖 is bias in 𝑖𝑡, dan 𝑏𝐶 is bias in �̃�𝑡.

After 𝑓𝑡, 𝑖𝑡, dan �̃�𝑡 are obtained, the 𝐶𝑡 can be

calculated through Equation 4.

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (4)

with 𝐶𝑡−1 is cell state value before order-t.

The 𝑜𝑡 value is obtained with Equation 5, then the

Fig. 11. An illustration of the LSTM algorithm (Olah,

2015).

TEKNIK, 43 (2), 2022, 195

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

output value is calculated with Equation 6 to obtain an

output value for order-t.

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5)

 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6)

(a) (b)

Fig.12. Loss (a) and accuracy (b) charts in training and validation processes of VA-LSTM-SYSU

(a) (b)

Fig.13. Loss (a) and accuracy (b) charts in training and validation processes of VA-LSTM-SBU.

(a) (b)

Fig.14. Loss (a) and accuracy (b) charts in training and validation processes of LSTM-PASL.

(a) (b)

Fig.15. Loss (a) and accuracy (b) charts in training and validation processes of LSTM-AHM

(a) (b)

Fig.16. Loss (a) and accuracy (b) charts in training and validation processes of Model 1.

TEKNIK, 43 (2), 2022, 196

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

with 𝑊𝑜 is weight value for 𝑜𝑡, 𝑏𝑜 is bias in 𝑜𝑡, and tanh

(a) (b)

Fig. 17. Loss (a) and accuracy (b) charts in training and validation processes of Model 2.

(a) (b)

Fig.18. Loss (a) and accuracy (b) charts in training and validation processes of Model 3.

(a) (b) (c)

 (d) (e)

 (f) (g)

Fig.19. The confusion matrices resulted in the testing process on VA-LSTM-SYSU (a), VA-LSTM-SBU (b), LSTM-

PASL (c), LSTM-AHM (d), Model 1 (e), Model 2 (f), and Model 3 (g).

TEKNIK, 43 (2), 2022, 197

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

is a TanH function.

Meanwhile, the weight (𝑊) is calculated through

Equation 7.

𝑊 = (−

1

√𝑑
,
1

√𝑑
) (7)

with 𝑑 is the amount of data.

3. Results and Discussion

3.1 Results Analysis

This research presented reports from our seven

models' training, validation, and testing phase. For

training and validation, some charts of loss and accuracy

rate were compared to their epoch stages. The trained and

weighted models were saved locally as .h5 files by

considering the highest validation categorical accuracy in

Table 4. TP, FP, TN, and FN values of VA-LSTM-SYSU, VA-LSTM-SBU, LSTM-PASL, and LSTM-AHM

testing results.

Class Name
VA-LSTM-SYSU VA-LSTM-SBU LSTM-PASL LSTM-AHM

TP FP TN FN TP FP TN FN TP FP TN FN TP FP TN FN

run 4 5 76 5 3 4 77 6 4 5 76 5 5 6 75 4

walk 5 3 78 4 6 8 73 3 5 5 76 4 6 5 76 3

skip 4 6 75 5 3 4 77 6 4 5 76 5 2 2 79 7

jack 9 0 81 0 9 0 81 0 7 1 80 2 9 1 80 0

jump 8 2 79 1 8 0 81 1 6 1 80 3 8 2 79 1

pjump 8 0 81 1 9 1 80 0 9 2 79 0 6 2 79 3

side 8 1 80 1 9 0 81 0 8 1 80 1 7 2 79 2

wave2 9 0 81 0 9 0 81 0 9 0 81 0 9 1 80 0

wave1 9 0 81 0 9 0 81 0 8 1 80 1 8 0 81 1

bend 9 0 81 0 8 0 81 1 9 0 81 0 9 0 81 0

Table 5. TP, FP, TN, and FN values of our proposed LSTM models (Model 1, Model 2, and Model 3) testing

results.

Class Name

Model 1 Model 2 Model 3

TP FP TN FN TP FP TN FN TP FP TN FN

run 7 9 72 2 3 4 77 6 5 7 74 4

walk 7 2 79 2 6 2 79 3 6 5 76 3

skip 3 2 79 6 5 8 73 4 4 2 79 5

jack 8 2 79 1 9 2 79 0 9 3 78 0

jump 6 0 81 3 6 1 80 3 7 1 80 2

pjump 9 0 81 0 9 0 81 0 8 0 81 1

side 9 0 81 0 9 0 81 0 8 1 80 1

wave2 9 0 81 0 9 0 81 0 9 0 81 0

wave1 7 1 80 2 7 0 81 2 6 0 81 3

bend 9 0 81 0 9 1 80 0 9 0 81 0

Table 6. Measurement results of classification quality by each model.

Measure

VA-

LSTM-

SYSU

VA-

LSTM-

SBU

LSTM-

PASL

LSTM-

AHM

Our Proposed LSTM Models

Model 1 Model 2 Model 3

Average Accuracy 81% 81% 77% 77% 82% 80% 79%

Error Rate 19% 19% 23% 23% 18% 20% 21%

Precisionμ 81% 81% 77% 77% 82% 80% 79%

Recallμ 81% 81% 77% 77% 82% 80% 79%

F1scoreμ 81% 81% 77% 77% 82% 80% 79%

PrecisionM 82% 82% 77% 76% 85% 81% 81%

RecallM 82% 81% 77% 77% 82% 80% 79%

F1scoreM 82% 81% 77% 76% 82% 80% 79%

Training Time 2′ 33″ 5′ 35″ 5′ 52″ 1′ 4″ 10′ 50″ 54′ 13″ 24′ 52″

TEKNIK, 43 (2), 2022, 198

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

200 epochs. Testing and implementation are also reported

in the form of confusion matrices and a detection results

table.

3.1.1 Training and Validation Analysis

The training and validation process of VA-LSTM-

SYSU model can be seen in Figure 12. This model

reached its best weight at 189th epoch. It had the value of

training loss = 0.1923, training categorical accuracy =

0.9407, validation loss = 0.5696, and validation

categorical accuracy = 0.8778. The training duration of

this model was 2 minutes 33 seconds.

Figure 13 shows the training and validation chart

of VA-LSTM-SBU model. The best weight was 186th

epoch. The loss and accuracy values were training loss =

0.3745, training categorical accuracy = 0.8704, validation

loss = 0.5259, and validation categorical accuracy =

0.8556 with 5 minutes 35 seconds of training time.

LSTM-PASL got the best weight at 92nd epoch of

the training process. As shown in Figure 14, the values

were training loss = 0.0576, training categorical accuracy

= 0.9963, validation loss = 0.5801, and validation

categorical accuracy = 0.8444. The model training took 5

minutes and 52 seconds of duration.

LSTM-AHM model acquired its best epoch at

186th with loss and accuracy values were training loss =

0.2337, training categorical accuracy = 0.9295, validation

loss = 0.6382, and validation categorical accuracy =

0.8000. This training and validation process can be seen

in Figure 15 and were done in 1 minute 4 seconds.

Our Model 1 showed its best training and

validation at 153rd epoch, as shown in Figure 16. The

evaluation values were known as training loss = 0.1287,

training categorical accuracy = 0.9519, validation loss =

0.8884, validation categorical accuracy = 0.8444, and

training time = 10 minutes 50 seconds.

Model 2 has the best values of training loss =

0.0590, training categorical accuracy = 0.9815, validation

loss = 0.7505, and validation categorical accuracy =

0.8556. It was acquired at 194th epoch in 200 epochs of

training and validation with 54 minutes 13 seconds of

duration. The charts of these processes are shown in

Figure 17.

Table 7. Detection changing sequence by each model.

Action
VA-LSTM-

SYSU

VA-LSTM-

SBU

LSTM-

PASL
LSTM-AHM

Our Proposed LSTM Models

Model 1 Model 2 Model 3

run walk,run,

wave1,run,

wave1,run

wave1,skip,

run

walk,run,

walk,run

walk,run,

walk,skip,

run

walk,run,

wave1,run,

side

run,wave1,

run

run

walk walk,run,

walk,pjump,

run,pjump

wave1,walk,

wave1

bend,walk walk,run,

walk,run,

walk

walk,wave1,

walk,run

skip,run,

skip,run,

wave1

walk,run

skip wave1,walk,

run,bend,

run,pjump

wave1,side,

run

walk,run,

walk,run

walk,run,

walk,run

jack,wave1,

run,wave1,

run

run,skip,

bend

wave1,walk,

run

jack jack wave1,

jack

jack,wave2,

jack,wave2,

jack

wave2,jack,run,

jack,wave2,jack,

run

jack wave1,jack,

wave2,jack

wave1,jack,

wave2

jump walk,run,

walk,run,

bend

run,wave1,

walk

run,jump walk,run,

walk,run,

skip

wave1,run,

walk,run,

jump,run

jack,run,

walk,run,

skip,jump

jack,run,

skip,run

pjump pjump,

wave1,

pjump

bend,side,

pjump,

wave1,pjump

bend,pjump,

wave1,jack

walk,wave1,

run,wave1,

run

bend,pjump,

wave1,jack,

wave1,jack,wave1

pjump,

wave1,

pjump

pjump,

wave1,

pjump

side pjump pjump,

wave1

wave1,

pjump,

walk,jack

wave1,run,

walk,wave1

wave1,jack,

pjump,wave1,

pjump,side

wave1,side,

pjump,side,

wave1

wave1,pjum,

side,pjump

wave2 jack,

wave2,

jack

jack wave1,jack,

wave2,jack

wave2,jack,

wave2,run,

wave2,run

jack,

wave2,

jack

wave2,jack,

wave2,jack

wave1,wave,

jack,wave2,

jack

wave1 wave1,jack,

wave1,jack,

wave1,jack,

wave1

jack,wave1,

wave2,wave,

jack,wave1

wave1 wave2,wave1,

wave2,wave1

jack,

wave1

wave1 wave1

bend bend pjump, bend,

pjump

bend bend bend,pjump,

bend

bend,

pjump

pjump,bend,

pjump,bend

TEKNIK, 43 (2), 2022, 199

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

The charts of training and validation of Model 3

are depicted in Figure 18. In 24 minutes 52 seconds, this

process yielded the best weight at 103rd epoch with

training loss = 0.0682, training categorical accuracy =

0.9852, validation loss = 0.5674, and validation

categorical accuracy = 0.8556.

The seven models with respective weights

obtained from training and validation processes were then

tested in the testing process. The results from the testing

process were evaluated using a confusion matrix along

with its calculations of average accuracy, error rate,

precision, recall, and F1score, in terms of micro and

macro variants.

All seven matrices in Figure 19 show pretty good

results of jack, jump, pjump, side, wave2, wave1, and

bend actions prediction. This was shown by the True

Positive (TP), which had values ranging from 6 to 9. In

contrast, the prediction of the run, walk and skip actions

was not good enough. The matrices show this condition

from the TP values of the individual actions that vary

from 2 to 7.

To summarize the True Positive (TP), False

Positive (FP), True Negative (TN), and False Positive

(FP), we presented Table 4 and Table 5. Then, the average

accuracy, error rate, precision, recall, and F1score were

evaluated in Table 6, including the training time

comparison of each model. The times were formatted in

a unit of minute (′) and second (″).

3.1 Model Implementation on a Demo Video

The model passing through the training and

validation processes yielded some weight values that

could be used as a matrix in action classification. With a

self-recorded video, this research used a simple python

program through a Jupyter Notebook to implement

classification testing for each model. This

implementation resulted in some action classifications, as

shown in Table 7.

Models implementation yielded different action

detection on the video. This results of VA-LSTM-SYSU,

VA-LSTM-SBU, LSTM-PASL, LSTM-AHM, Model 1,

Model 2, and Model 3 models showed a consistent

detection of action “jack” and “bend”; “jack”; “wave1”

(a) (b)

Fig. 20. Jack detection by VA-LSTM-SBU (a) and wave1 detection by Model 2 (b).

(a) (b)

Fig. 21. Run detection by Model 1 (a) and wave2 by Model 2 (b).

(a) (b)

Fig. 22. Detection results of side by LSTM-PASL (a) and jump by Model 3 (b).

TEKNIK, 43 (2), 2022, 200

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

and “bend”; “jack”; “wave1”; and also “run” and

“wave1” respectively. Figure 20 shows several samples

of these consistent detections.

Some poor detection (there were many detection

inconsistencies) were known in “wave1” action for VA-

LSTM-SYSU and VA-LSTM-SBU models. In LSTM-

PASL, LSTM-AHM, Model 1, Model 2, and Model 3,

this poor detection happened in “jack”; “jack” and

“wave2”; “run”, “pjump”, and “side”; “jump” and “side”;

and “wave2” as shown in Figure 21.

Meanwhile, the detection of “skip”, “jump”, and

“side”; “skip”, “jump”, “side”, and “wave2”; “skip” and

“side”; “skip”, “jump”, “pjump”, and “side”; “skip”;

“walk”, and also “skip” and “jump” actions were hard to

detect by VA-LSTM-SYSU, VA-LSTM-SBU, LSTM-

PASL, LSTM-AHM, Model 1, Model 2, and Model 3

respectively that can be seen in Figure 22.

4. Conclusion

According to this research, there were several

points to conclude. They were performance, evaluation

results, and model implementation results.

Artificial Neural Network modeling using

MediaPipe and Long Short-Term Memory Architecture

could be done with various combinations of the input

layer, hidden layer, and output layer. The number of input

neurons should be customized upon input data, whereas

the output neurons fitted to the number of classification

classes. In the hidden layer section, customization

consisted of the number of LSTM layers, Dropout layers,

Dense layers, and/or Flatten layers as well as its

hyperparameters.

The classification accuracies of all seven LSTM

models were in the range of 77% to 82%. The highest

accuracy was obtained by Model 1, whereas LSTM-

AHM model obtained the lowest. From the training time

aspect, LSTM-AHM model had the fastest duration,

namely 1 minute 4 seconds. In contrast, Model 2 had the

longest duration, 54 minutes 13 seconds.

The detections yielded some fluctuated

classifications in the demo video implementation phase

compared to the testing results. This condition indicated

differences in model behavior when classifying static data

(from training, validation, and testing dataset) compared

to dynamic data (from demo video). Therefore, the

generalization and detection consistency of the seven

models were not good enough.

References

Agrawal, A. S., Chakraborty, A., & Rajalakshmi, C. M.

(2022). Real-Time Hand Gesture Recognition

System Using MediaPipe and LSTM. International

Journal of Research Publication and Reviews, 3(4),

2509–2515.

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H.,

Kamar, E., Nagappan, N., Nushi, B., &

Zimmermann, T. (2019). Software Engineering for

Machine Learning: A Case Study. Proceedings -

2019 IEEE/ACM 41st International Conference on

Software Engineering: Software Engineering in

Practice, ICSE-SEIP 2019, 291–300.

https://doi.org/10.1109/ICSE-SEIP.2019.00042

An, J., Li, W., Li, M., Cui, S., & Yue, H. (2019).

Identification and classification of maize drought

stress using deep convolutional neural network.

Symmetry, 11(2).

https://doi.org/10.3390/sym11020256

Beniwal, S., Jambheshwar, G., & Arora, J. (2012).

Classification and Feature Selection Techniques in

Data Mining. International Journal of Engineering

Research & Technology (IJERT), 1(6).

https://www.researchgate.net/publication/26366270

5

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s

Journal of Software Tools, 25(11), 120–123.

Cheng, G., Wan, Y., Saudagar, A. N., Namuduri, K., &

Buckles, B. P. (2015). Advances in Human Action

Recognition: A Survey. ArXiv, abs/1501.05964.

http://arxiv.org/abs/1501.05964

Chinchor, N. (1992). MUC-4 Evaluation Metrics.

Proceedings of the 4th Conference on Message

Understanding - MUC4 ’92, 22–29.

https://doi.org/10.3115/1072064.1072067

Codreanu, V., Podareanu, D., & Saletore, V. A. (2017).

Scale out for large minibatch SGD: Residual network

training on ImageNet-1K with improved accuracy

and reduced time to train. ArXiv, abs/1711.04291.

Daniel Tanugraha, F., Pratikno, H., Musayanah, M., &

Indah Kusumawati, W. (2022). Pengenalan Gerakan

Olahraga Berbasis (Long Short-Term Memory)

Menggunakan Mediapipe. Journal of Advances in

Information and Industrial Technology, 4(1), 37–45.

https://doi.org/10.52435/jaiit.v4i1.182

Ghosh, S. (2021). Proposal of a Real-time American Sign

Language Detector using MediaPipe and Recurrent

Neural Network. International Journal of Computer

Sciences and Engineering, 9(7), 46–52.

https://doi.org/10.26438/ijcse/v9i7.4652

Google LLC. (2020). MediaPipe Pose.

https://google.github.io/mediapipe/solutions/pose.ht

ml

Gorelick, L., Blank, M., Shechtman, E., Irani, M., &

Basri, R. (2007). Actions as Space-Time Shapes.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(12), 2247–2253.

https://doi.org/10.1109/TPAMI.2007.70711

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-

Term Memory. Neural Computation, 9(8), 1735–

1780. https://doi.org/10.1162/neco.1997.9.8.1735

TEKNIK, 43 (2), 2022, 201

doi: 10.14710/teknik.v43i2.46439 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 240-9919

Janssens, J. (2021, December 17). Data Science at the

Command Line, 2e: Obtain, Scrub, Explore, and

Model Data with Unix Power Tools.

https://datascienceatthecommandline.com/2e/

Keras. (n.d.-a). Adam. Retrieved July 3, 2022, from

https://keras.io/api/optimizers/adam/

Keras. (n.d.-b). ModelCheckpoint. Retrieved April 5,

2022, from

https://keras.io/api/callbacks/model_checkpoint/

Lakkapragada, A., Kline, A., Mutlu, O. C., Paskov, K.,

Chrisman, B., Stockham, N., Washington, P., &

Wall, D. (2022). Classification of Abnormal Hand

Movement for Aiding in Autism Detection: Machine

Learning Study. JMIR Biomedical Engineering

(JBME), 7(1). https://doi.org/10.2196/33771

Mason, H., & Wiggins, C. (2010). A Taxonomy of Data

Science.

https://sites.google.com/a/isim.net.in/datascience_is

im/taxonomy

McCullum, N. (2020, July 13). The Ultimate Guide to

Recurrent Neural Networks in Python.

https://www.freecodecamp.org/news/the-ultimate-

guide-to-recurrent-neural-networks-in-python/

Minh, T. N., Sinn, M., Lam, H. T., & Wistuba, M. (2018).

Automated Image Data Preprocessing with Deep

Reinforcement Learning. ArXiv, abs/1806.05886.

https://doi.org/10.48550/ARXIV.1806.05886

Moetia Putri, H., & Fuadi, W. (2022). Pendeteksian

Bahasa Isyarat Indonesia Secara Real-Time

Menggunakan Long Short-Term Memory (LSTM).

Jurnal Teknologi Terapan and Sains 4.0, 3(1).

Olah, C. (2015, August 27). Understanding LSTM

Networks. https://colah.github.io/posts/2015-08-

Understanding-LSTMs/

Reimers, N., & Gurevych, I. (2017). Reporting Score

Distributions Makes a Difference: Performance

Study of LSTM-networks for Sequence Tagging.

EMNLP 2017 - Conference on Empirical Methods in

Natural Language Processing, Proceedings, 338–

348. https://doi.org/10.48550/arxiv.1707.09861

Sak, H., Senior, A., & Beaufays, F. (2014). Long Short-

Term Memory Based Recurrent Neural Network

Architectures for Large Vocabulary Speech

Recognition. ArXiv, abs/1402.1128.

http://arxiv.org/abs/1402.1128

Sarker, I. H. (2021). Deep Learning: A Comprehensive

Overview on Techniques, Taxonomy, Applications

and Research Directions. SN Computer Science,

2(6). https://doi.org/10.1007/s42979-021-00815-1

Sokolova, M., & Lapalme, G. (2009). A Systematic

Analysis of Performance Measures for Classification

Tasks. Information Processing and Management,

45(4), 427–437.

https://doi.org/10.1016/j.ipm.2009.03.002

Tan, M., & Le, Q. v. (2021). EfficientNetV2: Smaller

Models and Faster Training. ArXiv, abs/2104.00298.

https://doi.org/10.48550/arxiv.2104.00298

Verdhan, V. (2021). Computer Vision Using Deep

Learning (1st ed.). Apress.

https://doi.org/10.1007/978-1-4842-6616-8

Wang, T., Chen, Y., Zhang, M., Chen, J., & Snoussi, H.

(2017). Internal Transfer Learning for Improving

Performance in Human Action Recognition for

Small Datasets. IEEE Access, 5, 17627–17633.

https://doi.org/10.1109/ACCESS.2017.2746095

Xu, J., Zhang, Y., & Miao, D. (2020). Three-Way

Confusion Matrix for Classification: A Measure

Driven View. Information Sciences, 507, 772–794.

https://doi.org/10.1016/j.ins.2019.06.064

Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., & Zheng,

N. (2017). View Adaptive Recurrent Neural

Networks for High Performance Human Action

Recognition from Skeleton Data. Proceedings of the

IEEE International Conference on Computer Vision,

2017-October, 2136–2145.

https://doi.org/10.48550/arxiv.1703.08274

	1. Introduction
	2. Research Method
	2.1 Research Tools Specification
	2.2 Research Workflow
	2.2.1 Obtain-1
	2.2.2 Scrub-1
	2.2.3 Explore-1
	2.2.4 Obtain-2
	2.2.5 Scrub-2
	2.2.6 Explore-2
	2.2.7 Model
	2.2.8 Interpret

	2.3 Long Short-Term Memory

	3. Results and Discussion
	3.1 Results Analysis
	3.1 Model Implementation on a Demo Video

	4. Conclusion
	References

