Analysis of CaCO$_3$ Impregnation on HY Zeolite Surface Area, Pore Size, and Activity in the Catalytic Cracking of Palm Oil to Biofuels

Rosyad Adrian Febriansyar1, Teguh Riyanto1,2, I. Istadi1,2,*

1 Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia.
2 Laboratory of Plasma-Catalysis (R3.5), Center of Research and Services - Diponegoro University (CORES-DU), Integrated Laboratory, Universitas Diponegoro, Semarang, Central Java 50275, Indonesia

Abstract

Fossil energy sources are currently decreasing, requiring the development of alternative energy sources. Vegetable oil is a raw material for alternative renewable energy supplies. This study produced biofuels from vegetable oil using calcium carbonate (CaCO$_3$)-impregnated HY catalysts. In addition, this study aimed to investigate the effect of CaCO$_3$ impregnation on the surface area and the catalytic activity of catalysts in the palm oil cracking process to produce biofuels. The HY catalyst was modified by the wet impregnation method in 5 wt% CaCO$_3$ solution and was further calcined at 550°C for three h. Furthermore, the catalysts were tested in a continuous fixed-bed catalytic reactor at 450°C. The catalyst properties were characterized using Brunauer–Emmett–Teller (BET) surface area, Barrett–Joyner–Halenda (BJH) for pore size distribution, and X-Ray Diffraction (XRD) for crystal structure and phases. The results showed that the addition of CaCO$_3$ decreased surface area and pore volume; however, the pore size increased, which resulted in the production of heavy hydrocarbons. Interestingly, the introduction of CaCO$_3$ enhanced the yield of Organic Liquid Product (OLP) and diesel-range hydrocarbons selectivity to reach 79.09% and 30.54%, respectively. Furthermore, the introduction of CaCO$_3$ increased deoxygenation activity.

Keywords: Catalyst activity, biofuel, calcium carbonate, deoxygenation

1. Introduction

The fast growth of the population and economy in contemporary civilization affects the energy demand, which continues to increase constantly. Whilst fossil fuels have usually been the primary source of energy, their supply is very restricted and continues to decrease (Sharma & Sheth, 2015). When fossil fuels are utilized indefinitely, they have a significantly detrimental influence on the environment. With rising energy demand and diminishing fossil fuel reserves, it is critical to develop renewable energy sources to satisfy energy demands. Since biofuels are renewable energy sources, palm oil (biofuel) offers enormous potential to satisfy energy demands (Riyanto et al., 2020).

Biofuels have been discovered to have a high potential for usage as a fossil fuel alternative. Biofuels, including gaseous and liquid fuels, are often derived from renewable resources. Gaseous biofuels, such as methane and hydrogen, and liquid biofuels, like biogasoline and biodiesel, are the primary energy sources for automobiles and other vehicles. Moreover, it can be utilized to generate power (Ahmad et al., 2016). Plant oils, such as vegetable oils and palm oil, mainly comprise triglycerides and can be easily converted into liquid biofuels (Twaig et al., 2004).

Palm oil is an alternative feedstock for biofuel (Ndayishimiye & Tazerout, 2011). Its physical and chemical properties are very similar to that of diesel. However, due to its high viscosity, its direct use as a fuel in diesel engines can cause poor atomization, carbon deposition, or blockage of the fuel lines. It is necessary to convert palm oil into alternative fuels to replace the existing fossil fuels. At present, catalytic cracking is required to lower the acid value and oxygen content of biofuels to enhance fuel attributes such as density, calorific value, and dynamic viscosity. Catalysts are used to break down lipids to produce biofuels (Zheng, Lei, et al., 2019). Several studies have been conducted to convert vegetable oil into hydrocarbons, namely Pyrolysis (Nomura & Terwilliger, 2019), transesterification (Thaoklua et al., 2018), and catalytic...
cracking (Doronin et al., 2013). Catalytic cracking is the most advanced method for converting vegetable oils to biofuels owing to its low energy needs, low operating costs, and great flexibility in using a variety of vegetable oils (Istadi et al., 2020).

Various solid catalysts for biofuel production have been developed, including alkaline bases, zeolites, and modified zeolites (Kesić et al., 2012). In the case of catalytic cracking, the most developed base catalysts were CaO-based catalysts, while the most developed acid catalysts were zeolite-based catalysts (Riyanto et al., 2020). An appropriate catalyst must be developed for biofuel production through catalytic cracking of palm oil. The properties of the employed catalyst are critical in synthesizing biofuels from palm oil (Istadi et al., 2020).

Commercial synthetic zeolites are more often utilized than natural zeolites due to their greater purity and particle size uniformity, making them more suitable for most scientific applications and purposes (Z. Liu et al., 2016). CaO catalyst can be obtained from the decomposition of CaCO\(_3\), which affects the crystal structure, surface area, and pore size (Zul et al., 2021). According to Nurjannah et al. (2012), at 450°C, the palm oil cracking process over HZSM-5 catalyst yields gasoline, kerosene, and diesel of 28.78%, 16.57%, and 7.65%, respectively. Based on the research conducted by Yi et al. (2019), the addition of CaO in the cracking process produced more BTX (Benzene, Toluene, Xylene). According to Yan et al. (2008), the CaO supported by zeolite catalyst has the maximum activity compared to catalysts MgO that were not supported by zeolite catalyst. In the other report, the production of CaO from the calcination of CaCO\(_3\) resulted in a higher fuel yield (Chireshe et al., 2020). Research conducted by Istadi et al. (2021), the surface area of the Ni-modified HY catalyst is decreased. However, there was an increase in OLP yield and selectivity in the catalytic cracking process. Yigezu & Muthukumar (2014) reported that the surface area affects the catalysts' performance in the catalytic cracking process.

According to the previous studies, adding CaCO\(_3\) to zeolite HZSM-5 could improve the catalyst's activity because reducing the surface area enhances gasoline conversion and heavy hydrocarbons by 99.65% and 38.65%, respectively (Kianfar et al., 2018). Based on previous research, the study on the effect of CaCO\(_3\) impregnation on HY zeolite on surface area and pore size of catalysts for palm oil cracking is relatively restricted. In addition, the effect of CaCO\(_3\) impregnation to HY zeolite on the catalysts' surface area and pore properties is also important since the catalyst is one of the important properties in catalytic cracking. Therefore, this research aims to evaluate the impact of CaCO\(_3\) addition on catalysts' surface area, pore size, and catalytic activity throughout the conversion process.

Table 1. Fatty acids composition of palm oil (Istadi et al., 2021)

<table>
<thead>
<tr>
<th>No</th>
<th>Component</th>
<th>Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Palmitic acid (C16:0)</td>
<td>44.53</td>
</tr>
<tr>
<td>2</td>
<td>Stearic acid (C18:0)</td>
<td>1.80</td>
</tr>
<tr>
<td>3</td>
<td>Oleic acid (C18:1)</td>
<td>41.91</td>
</tr>
<tr>
<td>4</td>
<td>1-Tridecene</td>
<td>5.32</td>
</tr>
<tr>
<td>5</td>
<td>2,6,10,14,18-Penta Methyl Eicosa pentane</td>
<td>6.44</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

2. Materials and Methods

2.1. Materials

This study used HY-zeolite catalyst material, obtained commercially from Zeolyst International as CBV760, and calcium carbonate (CaCO\(_3\)) (99.0%, Merck) as a precursor. As the feedstock, palm oil was obtained from the local market in Semarang. The specifications for palm oil can be seen in Table 1. In addition, Nitrogen gas (99% UHP) from PT. Samator was also used in this study to remove/flush oxygen content inside the pipelines and reactor instruments.

2.2. Catalysts' preparation

Zeolite HY was dried for 1 hour at 110°C in an electric oven (Memmert) and labeled as HY. Then, 20 g of HY was immersed in a 75mL CaCO\(_3\) solution (0.25 M) so that the impregnated CaCO\(_3\) was 5 wt% on the HY-zeolite catalyst. The slurry was stirred at a stirring speed of 600 rpm for 1 hour. After that, the slurry was aged for 12 hours. The mixture was then filtered and dried for 12 hours at a temperature of 65°C in an electric oven (Memmert). The catalyst was then calcined at 550°C for 3 hours in a furnace (ThermoLyne) and labeled as CaCO\(_3\)/HY catalyst.

2.3. Catalysts' characterization

The crystal structure of the catalysts was determined using X-ray diffraction (XRD) analysis (Shimadzu 7000) at 30 kV and 30 mA in the presence of Cu-K\(_\alpha\) radiation. With a scanning speed of 3°/min, the catalyst was scanned at an angle of 20 5-90°. The adsorption-desorption of N\(_2\) is a tool to identify a catalyst's surface area and pore size distribution. The surface area of the catalyst was determined using the Braunauer-Emmett-Teller (BET) technique. At the same time, the Barret-Joyner-Halenda (BJH) technique was used to determine the pore size distribution. The BET and BJH techniques are estimated using N\(_2\) gas adsorption at -196°C (Tsai, 2013).
2.4. Catalyst performance testing and biofuel analysis

The catalysts were tested for their catalytic performances for the cracking of palm oil using a fixed-bed catalytic reactor (Figure 1) to produce liquid fuels. The reactor was constructed with a stainless-steel tube with a diameter of 1 inch. A 450°C electric heating furnace is installed before the reactor as a pre-heater. Five grams HY and CaCO3/HY catalysts were introduced into the reactor. Then, for 15 minutes, 100 mL/min of N2 gas was flowed into the experimental apparatus to ensure no oxygen was connected to the stainless-steel surface. The reactor was heated until stable at the temperature reached 450°C. Thus, palm oil was fed into the reactor at a weight hourly space velocity (WHSV) of 0.288/min. A peristaltic pump (RZ1030-BX) controls the flow rate. The first 30 minutes were spent establishing the steady-state condition for the catalytic cracking process. Then, for four hours, the cracking process began. The product is condensed into an organic liquid product (OLP) after the cracking process. The non-condensable product and coke were classified as the by-products of the cracking process.

The organic liquid product (OLP), as a crude hydrocarbon and oxygenates product, was condensed and distilled fractionally based on ASTM D-86. The temperature range of gasoline range 39-204°C (CAS 86290-81-5), kerosene range 204-300°C (CAS 8008-20-6), and diesel range 300-370°C (CAS 68334-30-5). The yield and selectivity were calculated based on Equations (1)-(5).

\[
\text{Yield of OLP} = \frac{m_{\text{OLP}}}{m_{\text{feed}}} \times 100 \\
\text{Yield of gas} = \frac{m_{\text{OLP}}}{m_{\text{feed}}} \times 100 \\
\text{Yield of coke} = \frac{m_{\text{coal}}}{m_{\text{feed}}} \times 100 \\
\text{Yield of water} = \frac{m_{\text{water}}}{m_{\text{feed}}} \times 100 \\
\text{Selectivity of diesel} = \frac{m_{\text{diesel}}}{m_{\text{OLP}}} \times 100
\]

3. Result and Discussion
3.1. X-Ray Diffraction (XRD) Analysis on the Catalysts

The synthesized catalysts were characterized by diffraction patterns using XRD analysis to identify the crystal structure of HY and CaCO3/HY catalysts. Sharp peaks in the diffraction pattern suggest a crystalline structure, while broad peaks indicate an amorphous structure (Zhou & Chen, 2016). In Figure 2, the resulting diffraction peaks were matched with the JCPDS (Joint Committee on Powder Diffraction Standards) presented in Table 2.

Figure 2 shows the diffraction pattern of the HY catalyst (Faujasite). There are five sharp diffractions.
with high crystallinity at angles of 2θ = 6.6°, 10.6°, 12.4°, 16.2°, and 24.3°, which is similar to the results similar observation reported by Doyle et al. (2016) that HY zeolite has the same angle of 2θ. In this study, those peaks were observed in both catalysts HY and CaCO₃/HY catalysts, indicating that the Faujasite structure was present in both catalysts. The diffraction pattern of CaCO₃ has seven sharp diffractions shown at angles of 2θ = 23.4°, 29.7°, 36.2°, 39.6°, 43.4°, 47.7°, and 48.7°. The appearance of these diffractions indicates that the CaCO₃ has been successfully attached to HY zeolite.

As shown in Figure 2, the diffraction peaks of CaO were not observed in the CaCO₃/HY catalyst, indicating that the CaCO₃ was not converted to CaO during the calcination process. Research conducted by Lesbani et al. (2013) on the decomposition process of CaCO₃ with a decomposition temperature of 600°C showed that the decomposition of the compounds had not been completed and required higher temperatures to convert all these compounds into the form of CaO. When increasing the calcination temperature, the diffraction pattern becomes more intense and sharp, indicating a rise in the material's crystallinity and the elimination of CaCO₃ (Da Silva Castro et al., 2019).

3.2. Physical Properties of Catalysts

The Brauner, Emmet, and Teller (BET) method determined the specific surface area, while the pore size distribution was determined by the Barrett–Joyner–Halenda (BJH) method. The N₂ adsorption-desorption of HY and CaCO₃/HY catalysts have been carried out to determine the specific surface area, pore size distribution, total pore volume, and pore structure of the material (Purnamasari et al., 2017). Table 3 provides the result of the characterization of the catalysts’ surface area, pore-volume, and pore size.

Table 3 shows that the addition of CaCO₃ to HY zeolite decreased the surface area and pore volume decreased by 298.99 cm²/g and 0.362 cm³/g, respectively. The decrease in pore volume was caused by the pore filling, which was possibly the micropores, by CaCO₃. Due to the CaCO₃ impregnation, the pore volume and surface area reduced as the micropores were filled or blocked. The supported catalyst is essential in stabilizing the formed metal species during the calcination. However, agglomeration of metals could occur, attaching to the surface of the catalyst (L. Liu & Corma, 2018). Previously, Wang et al. (2020) found that the addition of CaCO₃ decreased the catalyst’s surface area and pore volume, which is similar to this study.

As shown in Figure 3(a), the average pore size of HY catalyst is 2.86 nm, while the CaCO₃/HY catalyst is 4.85 nm. This indicates that the impregnation of CaCO₃ on HY catalyst increases the average pore size of catalysts. This is due to the addition of calcium carbonate producing more mesopore (Ferrero et al., 2015), while Cheng et al. (2021) found that the increase average pore size could be controlled by adjusting the concentration of calcium carbonate. In addition, these results indicate that the pore size distribution of the HY and CaCO₃/HY catalysts is mesopore. Figure 3(b) shows a type IV isotherm profile of N₂ adsorption-desorption. In the mesopores, the isotherms show capillary condensation and absorption limitations above a certain point in the P/Po ratio (Fathi et al., 2014; Friedrich et al., 2010). The catalyst’s pore size distribution is classified as mesopore (2-50 nm) (Zheng et al., 2019). As a result, with the addition of CaCO₃, the micropores of CaCO₃/HY catalyst are blocked. Thus, the surface area catalyst was decreased. Cheng et al. (2021) reported that the pore size distribution could be controlled by adding CaCO₃.

3.3. Effect of Catalyst on Yield of Product

In this study, HY and CaCO₃/HY catalysts were investigated in the catalytic cracking of palm oil in a fixed bed catalytic reactor to produce the organic liquid
product (OLP). The OLP yield was calculated using (Eqs. (1)-(4)).

As shown in Figure 4, CaCO$_3$ increases the production of OLP and coke by 79.09 % and 2.39 %, respectively. The CaCO$_3$ aggregates covering the catalyst surface contributed to the increase in coke yield, which is proven by the BJH result (Table 3). Kianfar et al. (2018) suggested that the decrease in the surface area caused by increasing CaCO$_3$ concentration was a factor in the increased production of heavier hydrocarbons. The decrease in surface area is due to the CaCO$_3$ crystals blocking the catalyst pores as found by Zhao et al. (2015) that surface area catalysts decrease, leading to increased coke products and a decrease in biofuel products.

Additionally, the yield of gas and water decreased by 16.72% and 1.80%, respectively, because CaCO$_3$/HY has a lower surface area than HY. Thus, the primary reason for the increase in OLP yield is the mesopore structure of the CaCO$_3$/HY catalyst. The decrease in the yield of gas leads to the formation of heavy hydrocarbons due to the larger pore size, as seen in Table 3. As shown in Figure 4, water was produced through the deoxygenation pathway. Since each catalyst produces water, it is possible to suggest that both catalysts promote the deoxygenation reaction by releasing water molecules.

3.4. Effect of Catalyst on Diesel Selectivity

The catalytic activity performance of HY and CaCO$_3$/HY catalysts was also identified through their product selectivity, especially for the diesel fraction product in Figure 5, which was calculated using Eq. (5). As shown in Figure 5, the addition of CaCO$_3$ increases diesel selectivity by 30.54 %. The addition of CaCO$_3$ to the HY catalyst significantly improves selectivity, which means the CaCO$_3$/HY catalyst may have two catalyst characteristics, acidity, and basicity. Thus, the acidity helps increase diesel selectivity, and basicity helps the deoxygenation process. Verdoliva et al. (2019) found that HY zeolite has high acidity characteristics, while Wang et al. (2020) found that the addition of CaCO$_3$ can increase the basicity on the catalyst's surface. However, the acidity and basicity characteristics of catalysts will be done further and published elsewhere.
Table 4. Comparison of previous research on the cracking of palm oil into biofuel

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Temperature (°C)</th>
<th>Yield OLP (%)</th>
<th>Selectivity (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gasoline</td>
<td>Kerosene</td>
</tr>
<tr>
<td>Na$_2$CO$_3$</td>
<td>450</td>
<td>68</td>
<td>21</td>
<td>n.a.</td>
</tr>
<tr>
<td>ZSM-5</td>
<td>450</td>
<td>68</td>
<td>69.77</td>
<td>9.51</td>
</tr>
<tr>
<td>CaO</td>
<td>450</td>
<td>29</td>
<td>40</td>
<td>8.5</td>
</tr>
<tr>
<td>Ni/HY</td>
<td>410</td>
<td>46.3</td>
<td>69</td>
<td>n.a.</td>
</tr>
<tr>
<td>Co-CaO</td>
<td>350</td>
<td>64</td>
<td>78</td>
<td>n.a.</td>
</tr>
<tr>
<td>HY</td>
<td>450</td>
<td>77.41</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>CaCO$_3$/HY</td>
<td>450</td>
<td>79.09</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

*n.a : not available

Research by Fathi et al. (2014) found that the addition of CaCO$_3$ to the zeolite HSZM-5 enhanced its selectivity. The shape and porosity of the zeolite, on the other hand, influence the selectivity and composition of biofuels (Amalia et al., 2021). The increase in selectivity over the CaCO$_3$/HY catalyst occurred due to increased pore size, as shown in Table 3. The increase in CaCO$_3$ concentration resulted in increased catalyst-reactant interactions. The addition of catalyst supports may enhance the catalyst's interaction with the triglyceride molecules (Pasupulety et al., 2013). H. Wang et al. (2019) explained that catalyst support strongly impacted the triglyceride composition.

As a result, the catalyst's active site may improve diesel selectivity. The absence of gasoline and kerosene may be due to mesopore distribution. The decrease in the surface area (Table 3) caused by increasing CaCO$_3$ concentration was a factor in the increased production of heavier hydrocarbons (Kianfar et al., 2018). Peng et al. (2015) found that the increase in diesel selectivity was due to mesopore distribution in the catalyst. Catalytic activity usually rises as the active site increases. Moreover, mesoporous zeolite as a replacement for microporous zeolite significantly increased the selectivity toward heavy hydrocarbons (Zhang et al., 2014).

As can be seen in Figure 5, it is obtained that CaCO$_3$/HY catalyst gives a higher diesel selectivity than HY catalyst. Based on the catalyst characterization, this phenomenon is in line with the pore properties of catalysts. As shown in Table 3 and Figure 3, CaCO$_3$/HY has a larger pore size than HY catalyst. The pore size of the CaCO$_3$/HY catalyst is near twice that of HY pore size. Therefore, it can be suggested that the different selectivity of diesel is due to the pore shape-size-selectivity of zeolite. It was also previously postulated that pore structure could affect the catalyst activity in cracking reaction (Jung et al., 2004; S. C. Li et al., 2021). As the pore size is large enough, the cracking product can be easily released from the surface. It is true since it was reported that the cracking product could be trapped in micropores because of diffusion limitation (S. C. Li et al., 2021). Furthermore, the synthesized catalysts in this study have better activity than in some previous studies, as shown in Table 4.

Table 4 shows that the CaCO$_3$/HY catalyst obtained better results than in previous studies. The yield of OLP produced in this study is high enough. In addition, the HY and CaCO$_3$/HY strongly confirmed that catalysts show the highest diesel selectivity but are not adequate for gasoline and kerosene production. Additionally, adding 5%wt CaCO$_3$ into HY can increase catalyst activity to produce diesel fractions. It is due to the CaCO$_3$/HY having large pore sizes that can release

Figure 5. Effect of HY and CaCO$_3$/HY catalyst on diesel selectivity

do: 10.14710/teknik.v43i1.44579 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 2460-9919
the cracking product as long-chain hydrocarbons due to the pore selectivity. Moreover, the CaCO$_3$/HY catalyst has a higher diesel selectivity than HY catalyst due to the pore selectivity since CaCO$_3$/HY has a larger pore size than HY catalyst. Therefore, it can be concluded that the addition of CaCO$_3$ to HY catalyst could increase the pore size, leading to the formation of long-chain hydrocarbons.

4. Conclusion

Adding 5wt% CaCO$_3$ to the HY catalyst made a significant impact in decreasing surface area and pore volume and enhancing pore size. These concentrations resulted in a decrease in surface area and pore volume due to the micropore blocking by CaCO$_3$. However, the pore size increased because the micropore was blocked by CaCO$_3$ leaving the mesopore. The experimental data of HY and CaCO$_3$/HY catalysts showed that the yield of OLP increased from 77.41% to 79.09%. On the other hand, the yield of gas, coke, and water decreased from 18.46% to 16.72%, 2.17% to 2.39%, and 1.96% to 1.8%, respectively. The presence of water in each catalyst indicates a deoxygenation reaction in the catalytic cracking process. Furthermore, there was an improvement in diesel selectivity of 30.54% by using CaCO$_3$/HY catalyst in catalytic cracking of palm oil using a fixed-bed catalytic reactor. These findings are essential for the future development of catalysts. Further improvements in biofuels production using CaCO$_3$/HY catalyst can be achieved by optimizing the concentration of CaCO$_3$ as the catalysts' active site.

Acknowledgment

The authors would like to express their sincere gratitude to Research Institution and Community Service, Universitas Diponegoro, Indonesia, for the financial support through the World Class Research Universities Diponegoro (WCRU) research project category A with contract number: 118-22/UN7.6.1/PP/2021.

References

https://doi.org/10.14710/teknik.v43i1.44579

doi: 10.14710/teknik.v43i1.44579 Copyright © 2022, TEKNIK, p-ISSN: 0852-1697, e-ISSN: 2460-9919