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Abstract— This paper presents a new design of the torque and ~ This paper presents a new design of the torque and
stator flux estimators for Direct Torque control (DTC) for Field  fl|ux estimator in DTC for FPGA implementation, ugin

Programmable Gate Array (FPGA) implementation, whi 4\ s complement fixed-point representation  with
permit very fast calculations.An alternative variae word-size

approach in two’s complement fixed-point format isused for the Variable words’ sizes through the estimation prec&se
implementation, in order to minimize calculation erors and the Vvalidation of the implementation is done by verityithe
hardware resource usage. The simulation results dTC model experimental results during the motor’'s steadyestat

in Matlab, which performed double-precision calculdions, are

used as references to digital computations executed FPGA

implementation.The Hardware-in-the-loop (HIL) method is used Il. DIRECT TORQUE CONTROL

to verify the minimal error between Matlab simulation and the ; A
experimental results, and thus the well-functionaty of the Figure 1 represents the topology of a DTC drive:
implemented estimators.

Torque
[. INTRODUCTION . . Comparator Sitelng

Torque Reference *

Direct Torque control (DTC) is an alternative fo - St sty ol
controlling induction machines, which was introdidsy (&) ’ Comparstr| | Tale Souree
Takahashi (1986) [1] and Depenbrock (1988) [2]. M i
become famous owing to its simple structure anddgo | sector J flt:tl‘;f]c“m““
behavior such as its high efficiency and low losses Jndgment '
separate modulator is needed, the coordinate tra Aoty )| Troveand |
formation is not necessary, while the position eleco e Flux
and the PI current controller are not required][3-7 i v

The DTC algorithm is frequently implemented in Torqe timte T)
Microcontroller or Digital Signal Processing (DSB8}
10]. However, serial calculations are performed and
therefore, they cannot execute very fast computatio The estimated flux magnitude and torque are
without any losses. As an adequate solution, fagimpared with their references values. Torque and f
calculations are performed by using FPGA[1l-1Zomparators are consisted of three and two-level
Moreover, its high sampling frequency allows thiRysteresis respectively. Besides, the sector judgme
minimization of torque ripple [13-16]. evaluates the position of the stator flux vectorDQ

However, it is not easy to implement DTC in FPGAoordinates.

hardware. One of the hardest parts in the DTC The switching table produces the switching status
implementation is the torque and flux estimationgcording to the output of torque and flux compasat
[17].Complex digital computations are involved, 8@ ang the sector judgment. Those switching status are
binary multiplications and also a square root daln connected to the inverter, which is connected ® th

targeted for FPGA implementation, the difficultie§ otor. They are also used as the input for torauaiflax
which have been addressed in several research@9[18 astimation.

Figure 1DTC topology
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In order to estimates the stator flux and tt "

electromagnetic torque, several parameters neduoketo e Taqe
determined. Firstly, the stator currents from thatorla " ‘“
and Ib, are transformed into DQ coordinates, wlach o Cacaltor
adequate to DTC algorithm, as follows:

Id = la 1 In\::al?az:or [ 2 SORT | %,

A, _ W s i

|q = T :__Ia + 21 _‘|:| (2) ::: Caleulator |V %
2 Vde ——|

At the same time, by using the switching status (Sa
Sb and Sc) produced by the switching table, thiorsta
voltages in DQ components are determined: status Sa, Sh and Sc. At the end, it producesoiaiputs:
the estimation values of torquis ¢, ,and ¢5The
Vd == (252~ sb—s0) (3) sampling time chose is 5 ps, which is limited bg th
VQ =Z«vd:+ (5b—53) (4) ADC used.
All the equations which are modeling the motor
Then, using the calculated Id, Ig, Vd and Vq, tHeehavior are implemented in a two-stage-pipelined
estimation of the stator flux in DQ coordinates amgchitecture, as presented in Figure 3.Several

Figure 2 Block Diagram of torque and flux estimatos

performed as follows: mathematical operations are performed in paraiethe
first stage, stator currents and voltages in DQ-dinates
o =o, * (Vi-Rs«ld)«Ts (5) are calculated in parallel so that those resulisbeaused

o =o_ + (Vg-Rs«lIq)+Ts (6) to estimate the stator flux in the same stage.rébelted

currents and flux are used to determine the flux
Notice that Rs is the estimated stator resistanogggnitude and the torque estimation in the sectages
while Ts is the implementationsampling time. IA 62-bit non-restoring square root is implemented i
addition, equation (5) and (6) correspond to tlEder to compute the flux magnitude.
integration using Back Euler Method. As a mattefaot, As the matter of fact, [17] proposed that thregsta
[21-22] suggested that a filter should be addedh&o pipelined architecture should be implemented irs thi
integrator in the practical implementation. Thugjation module, by separating the computation of statorecits

(5) and (6) become: and voltages from the estimation of the stator .flux
However, the former can be considered as an imneedia

o, = ['a:.__ 4 Vd-Resld)aTr)x(1-wTs)  (7) calculation and thus, those calculations can begeader

. = ,:":__"' + (Vo= Rowl)eTo)x (1-wTs)  (8) into one single stage. As a consequence, the jateinc

the estimator is reduced from 15 ps to 10 ps.

Finally, equation (9) calculates flux magnitude by 1O achieve a good implementation, several digital
using a square root calculation, whereas the elecgharacteristics need to be considered when degighis

sampling time are among those key factors.

IR ©) A. Binary Format
T=2:Psllgroy—Id=a,) (10) In this implementation, two's complement fixed-
i point representation is used during all the openati
except for the square root calculation. In thatipalar
ll. TORQUE AND FLUX ESTIMATOR case, unsigned f_ixed-point representation_i_s apptimce
ARCHITECTURE its operand and its results are always positive.

) o ~ Recent DTC implementation generally used 32-bit
The algorithm of torque and flux estimation igormat where some bits might be left unused, wiibit
implemented in anarchitecture consisted of five Maigymat is not appropriate to achieve good DTC
blocks, as shown in Figure 2. This architecture $i&s jmplementation [23]. Therefore, variable word-size
inputs: two 21-bit currents la and Ib and thregtaing  approach is adopted for this implementation andasio,
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the redundant bits can be eliminated by truncatinc
process to minimize the hardware resources usage.

B. Quantization

&5

The determination of word size is one of the aitic =
parts in FPGA implementation. On one hand, insigffic il O o
number of bits used may reduce the precision osecau
the calculation error, which can unstabilize theoleh .
system. On the other hand, larger words used me Juii
increase the hardware area used for the implenm@mtat s
Since two’s complement fixed-point format is used f sagel sugel
the implementation, at least 2 things that needédo o ‘ ‘ ‘ ‘

verified. Firstly, the size of the integer must reperly @ 1
chosen to avoid the problem of overflow. Seconttig, . &
number of the fractional bits used must be sufficia ® o

order to minimize the quantization errors. o
For example, due to the fact that the input cusrét )

and b are varied from -10A to 10A, at least 5 hits @
necessary for theinteger bits. While 16 fractiobab ® ® 0
used can result in a very good precision, since thigyre 4 The torque estimation during steady state(A)
resolution is very smalK15 pA). Estimated torque for Matlab double precision; (B)
.. . . . . Estimated torque for Ts in 27 bits; (C) Estimated orque
One of the critical parts in this architecture lie t for Ts in 21 bits.

stator flux estimation, where the integration isf@ened.
This operation caneasily produce errors if the dizgp

time Ts is not properly scaled. b —=, 7.18
In this case, Ts = 5 ps = 0.000005 s. In fact, - 0.5773506 1
minimum of 21 bits isnecessaryto represent Tshis t 0y 716 | (0.100200111100110101} —"'Iq
16 6.16

case, Ts= 0.00000476837 Cla———
(0.0000000000000000010%0)  However, 27-bit :
representation is chosen to have a better preceioh
thus, Ts= 0.00000499934 S Figure 5 The example of Iq calculation
(0.0000000000000000010100111,11)

Figure 5 shows the estimated torque taken duriag th. Sampling Time

steady state. From figure 5, it shows that theuerq  The sampling time Ts is 5 ps. Therefore, all the
estimation for 21-bit Ts is imprecise, comparedtlab  operations involved in this model were performethini
double precision estimation, which is the ideakcas this period.

In fact, the number of bits is increasing afterheac  Notice that the use of high sampling frequency is
operation in order to avoid calculation errors Qmportant in DTC implementation, for the purpose to
imprecision. This will result in the rising of th@tdware inimize the torque ripple. The sampling time uéed
area used. Therefore, truncation process must BEp jmplementation is normally much bigger than Ts,
performed avoid the excessive increase of the nuwfoe,,hich is not less than 50 us.Therefore, it is reduay a
bits used. factor of 10 for this FPGA implementation and thus,

In the example shown in Figure 4, when Ib igertorque ripple is produced, as shown in Fidhre
multiplied by 2, the result should be in 6.16 b6

integer bits plus 16 fractional bits). Neverthele$ss
stored in 7.16 bits to avoid overflow, which maypan IV. EXPERIMENTAL RESULTS

during the addition operation. Next, when the addit The validation of designed torque and _qux
result is multiplied by, which coded in 1.18 bits, comparators was performed based on Hardware-in-the-

should be represented in 8.34 bits. But, it isdated to -OP (HIL) method. The DTC model in Matlab Simulink
6.16 bits. was simulated and then, the same data la, |b,I5&and
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Figure 6 (A) Estimated torque for Ts =5 ps; (B) Emated
torque for Ts =50 us

Sc used for the simulation were copied from
Matlabworkspace to VHDL codes, as the inputs far th
targeted FPGA.

The VHDL codes were simulated in Modelsim
before being synthesized and implemented in Altera
EP2C35F672C6. The test design flow is presented in
Figure 7.

The experiments were executed for three different
motor’s speeds: low speed, middle speed and higbdsp
All the experimental results were compared to the
validated Matlab simulation results. Since thedhare
resources in FPGA are limited to store all the taand
the outputs, the tests were taking place only durin

certain periods of motor's steady state. The
implementation results were observed on the ®
oscilloscope.

Figure 8 presents the input of the high-speed test
while Figures 9 to 11 shows the comparisons between
Matlab simulations and the experimental results.

The experimental results shown were corresponde
well with the simulation in Matlab, which was dome
double-precision computation. Besides,
implementation of the algorithm was also validated
different motor’'s speed.It can be observed by compa
the form of the estimated torque triangles or thmioer
of flux waveform complete cyclevisualized withineth
same period, for example.

q®

the

©

V. CONCLUSION

FPGA is an alternative for the realization of ahhig
performance DTC implementationowing to its high
processing frequency, which cannot be obtainednyy a
DSP application. The choice of words’ sizes, theaby
format and the sampling time used are very impbitan
order to achieve a good implementation of the extins.

(D)
Figu
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Figure 7 Top-down test design flow
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Figure 11Comparison between Matlab simulation andhe

experimental result for flux locus in high-speed tst.
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