
TRANSMISI : JURNAL ILMIAH TEKNIK ELEKTRO, 25, (3), JULI 2023

p-ISSN 1411-0814 e-ISSN 2407-6422

https://ejournal.undip.ac.id/index.php/transmisi DOI : 10.14710/transmisi.25.3.115-125 | Hal. 115

A CONTROLLER AREA NETWORK (CAN) BUS

TEMPERATURE AND HUMIDITY DATA MONITORING SYSTEM

Arief Wisnu Wardhana*), Agung Mubyarto and Acep Taryana

Department of Electrical Engineering, Faculty of Engineering, Universitas Jenderal Soedirman, Purwokerto

Jl. Mayjend. Sungkono Km 5, Blater, Kalimanah, Purbalingga 53371, Indonesia

*) E-mail: arief.wardhana@unsoed.ac.id

Abstrak

Pengukuran suhu dan kelembapan sering diperlukan untuk banyak bidang, misalnya pertanian, industri, atau penelitian.

Artikel ini memaparkan riset tentang sistem pemonitor suhu dan kelembapan relatif yang mampu mencatat data secara

otomatis dan terus-menerus sepanjang hari. Jaringan sistem ini berbasis standar bus CAN (Controller Area Network) yang

didesain agar memungkinkan banyak node kendali untuk berkomunikasi satu sama lain tanpa sebuah komputer host.

Sistem terdiri dari sebuah jalur bus CAN, dua node transmisi yang dijalankan oleh Arduino UNO dan Arduino Nano,

serta satu node penerima Arduino UNO board. Kemudian terdapat tiga MCP2515 CAN bus controllers, tiga TJA1050

CAN transceivers, dua sensor suhu dan kelembapan DHT11, dan sebuah LCD I2C 16x2 untuk menampilkan data suhu

dan kelembapan. Terdapat dua node transmisi, satu mengirimkan data suhu dan satunya lagi mengirimkan data

kelembapan. Data kemudian diproses oleh node transmitter dan dikirimkan melalui CAN bus. Untuk menampilkan data

dilakukan oleh node receiver. Pengujian transmisi dari beberapa nomor identifikasi pesan yang berbeda menunjukkan

bahwa LCD selalu menampilkan pesan yang mempunyai nomor identifikasi lebih rendah. Dengan modifikasi program

untuk node transmitter, data suhu dan kelembapan terukur ditampilkan secara bergantian dan kontinyu pada LCD. Secara

keseluruhan, sistem ini sudah berfungsi dengan baik sesuai dengan spesifikasi awal. CAN bus bisa mentransfer sampai

delapan byte dalam sekali waktu. Terutama, skema alokasi prioritas pesan pada identifier adalah satu fitur CAN yang

membuatnya sangat menarik untuk digunakan pada lingkungan kendali waktu-nyata. Selain itu, sistem ini sudah terbukti

stabil dan dapat diandalkan.

Kata kunci: CAN bus, mikrokontroler, sensor suhu, arbitrasi, nomor identifikasi pesan, jaringan bus perangkat

Abstract

Measurement of temperature and humidity is required in many fields, e.g. agriculture, industrial, or research. This paper

presents research about a temperature and relative humidity monitoring device automatically and continuously for 24

hours daily. The network is based on the Controller Area Network (CAN) bus standard, which allow multiple controller

nodes to communicate with each other without a host computer. The system consists of a CAN bus line, two transmitter

nodes by Arduino UNO board and Arduino Nano board, one receiver node by one Arduino UNO board, three MCP2515

CAN bus controllers, three TJA1050 CAN transceivers, two DHT11 temperature and relative humidity sensors, and an

I2C LCD 16x2 for data display. There are two transmitter nodes for temperature and humidity data. The data is then

processed by the transmitter nodes and sent via CAN bus. Display of data is carried out by the receiver. Transmission

tests of different message ID both for temperature and humidity messages show that the LCD always displays the

messages that have lower ID. By modifying the programs, measured data can be displayed alternately and continuously

on the LCD. Overall, the system functions according to initial specifications. CAN bus network can transfer up to eight

bytes of information at a time. Especially, the allocation of priority to messages in the identifier is a feature of CAN

that makes it particularly attractive for use within a real-time control environment. Furthermore, the system has been

proved stable and reliable.

Keywords: CAN bus, microcontroller, temperature sensor, arbitration, message identification number, device bus

network

1. Introduction

Today's science and technology has developed very

rapidly, especially in things that can help human life and

work so that it becomes easier and more efficient. Humans

have developed so much from using primitive methods to

reach today's modern conditions in the way they carry out

their daily lives. Some examples showing human activities

in their in daily life, are in using various tools to help them,

TRANSMISI : JURNAL ILMIAH TEKNIK ELEKTRO, 25, (3), JULI 2023

p-ISSN 1411-0814 e-ISSN 2407-6422

https://ejournal.undip.ac.id/index.php/transmisi DOI : 10.14710/transmisi.25.3.115-125 | Hal. 116

processing food ingredients for their food needs, or even

just to feel and observe the weather in their vicinity.

For example, a person might just feel and observe the

temperature or humidity around them without any further

purpose. This activity can also be carried out even further,

namely to deliberately monitor the temperature and

humidity continuously for certain purposes. This certainly

requires an accurate recording device.

If we are to measure temperature or humidity, we must

have some sort of units by which to classify these

measurements. The original units used were 'hot' and 'cold'

[1]. And only the terms 'moist' and 'dry' were used to

classify humidity measurements. This may have been

sufficient for their time, but are inadequate for modern use.

In addition, due to the nature of the measurement, it is

sometimes required for a continuous monitoring. For

example, we often need to record (or to monitor) the

temperature or humidity that changes every minute or even

seconds. If done manually, this will become inefficient

because it takes a lot of time and makes it difficult to collect

data. Therefore, an easy- to-use data monitoring system is

needed.

Various types of temperature and humidity data monitoring

system could be designed. It might be in the form of a

stand-alone temperature and humidity data monitoring

consisting of a single device. On the other hand, it could be

a collection of several such device connected in a network.

For the later case, a method (called a standard or protocol)

is certainly required to regulate the data transmission

between the devices. Several protocols have been

standardized, that have even been included in the industrial

network such as MODBUS standard, Profibus standard,

CAN bus standard.

A lot of research about temperature and humidity

monitoring has been done. Some of them consists of

several sensor devices connected in a network. Those

which are designed based on standard CAN bus can

mentioned as follows.

First, there is research done by J. da Silva Sa et al presented

the implementation of smart sensors for monitoring

temperature and for communicating among themself using

the protocol CAN [2]. Next, a work done by Xu Yan et al

introduced data acquisition system design composed of

temperature and humidity sensor, the SCM system,

computer, the CAN bus [3]. There is also another research

performed by Q. Zhu et al proposed a temperature remote

monitoring embedded system platform. The embedded

microprocessor AT91SAM7X256 is used as CPU of the

system. The system realizes real-time remote data

collection monitoring and storage through protocol data

conversion of the CAN bus and RS232 bus of the

distributed temperature acquisition node [4]. And research

aiming at the monitoring environment characteristics, an

on-line monitoring system of power cable joints

temperature based on the combination of CAN wired

transmission and ZigBee wireless network is designed,

done by Lihong Zhang et al [5].

The network of temperature and humidity monitoring

devices that was designed in this research was also based

on the CAN bus standard, which is the CAN2.0b Standard.

The system consists of three CAN nodes with their

respective CAN controllers and CAN transceivers. Two

nodes will do the transmission of temperature and humidity

data through the bus, and another one node will carry out

displaying the data. A standard CAN with 11-bit identifier

will be used as the data CAN frame format.

This device is able to monitor temperature and humidity in

the vicinity of sensor location. The temperature and

humidity sensors can be placed in several different

locations. In this experiment, two humidity and

temperature sensors were installed in two different

locations. However, this is an open system, in the sense that

it is possible to have up to 8 device nodes on a single CAN

bus since on a standard CAN with 11-bit identifier, up to 8

bytes data may be transmitted. In other words, addition of

some more measurement points is possible. An example of

object whose temperature and relative humidity can be

measured by this device is mainly a room that is sensitive

to changes in temperature and relative humidity.

For maximum cable and maximum number of nodes for

this CAN bus, the High-Speed ISO 11898 Standard

specifications are given for a maximum signaling rate of 1

Mbps with a bus length of 40 m and a maximum of 30

nodes.

2. Controller Area Network (CAN) Bus

CAN bus is a device bus network based on the widely used

CAN electronic chip technology. It was originally used

inside automobiles to control internal components such as

brakes and other systems [6]. The CAN bus was developed

by BOSCH as a multi-master, message broadcast system

that specifies a maximum signaling rate of 1 megabit per

second (bps) [6]. Unlike a traditional network such as USB

or Ethernet, CAN does not send large blocks of data point-

to-point from node A to node B under the supervision of a

central bus master. In a CAN network, many short

messages (up to eight bytes) like temperature, humidity, or

RPM are broadcast to the entire network, which provides

for data consistency in every node of the system.

2.1. Standard CAN

The CAN communication protocol is a carrier-sense,

multiple-access protocol with collision detection and

arbitration on message priority (CSMA/CD+AMP).

CSMA means that each node on a bus must wait for a

prescribed period of inactivity before attempting to send a

TRANSMISI : JURNAL ILMIAH TEKNIK ELEKTRO, 25, (3), JULI 2023

p-ISSN 1411-0814 e-ISSN 2407-6422

https://ejournal.undip.ac.id/index.php/transmisi DOI : 10.14710/transmisi.25.3.115-125 | Hal. 117

message. CD+AMP means that collisions are resolved

through a bit-wise arbitration, based on a preprogrammed

priority of each message in the identifier field of a message.

The higher priority identifier always wins bus access. That

is, the last logic-high (in CAN, a logic-high is associated

with a zero) in the identifier keeps on transmitting because

it is the highest priority. Since every node on a bus takes

part in writing every bit "as it is being written," an

arbitrating node knows if it placed the logic-high bit on the

bus [7].

The ISO-11898:2003 Standard CAN, with the standard 11-

bit identifier, provides for signaling rates from 125 kbps to

1 Mbps.The bit fields of Standard CAN are shown in

Figure 1 below [7].

Figure 1. Standard CAN: 11-bit Identifier

The Standard CAN 11-bit identifier establishes the priority

of the message. The lower the binary value, the higher its

priority. Data – up to 8 𝑥 8 𝑏𝑦𝑡𝑒𝑠 = 64 bits of application

data may be transmitted.

2.2. A CAN Message

The CAN bus access is regulated by the method of

nondestructive bitwise arbitration. Nondestructive means

that the frame that is winner of the arbitration i.e. the higher

priority message, is not disturbed and does not need to be

restarted. This mechanism requires the relevant physical

drivers to be implemented in a certain way: The two logical

levels on the CAN bus must be dominant and recessive,

meaning that one node, sending a dominant level,

overwrites all other nodes that send a recessive level. In the

CAN protocol, a logical one is sent recessive and a logical

zero is sent dominant.

A fundamental CAN characteristic shown in Figure 2 is the

opposite logic state between the bus, and the driver input

and receiver output. Normally, a logic-high is associated

with a one, and a logic-low is associated with a zero - but

not so on a CAN bus [7].

Figure 2. The Inverted Logic of a CAN Bus

Bus access is event-driven and takes place randomly. If two

nodes try to occupy the bus simultaneously, access is

implemented with a non-destructive, bit-wise arbitration.

Non-destructive means that the node winning arbitration

just continues on with the message, without the message

being destroyed or corrupted by another node. The lower

the binary message identifier number, the higher its

priority. An identifier consisting entirely of zeros is the

highest priority message on a network because it holds the

bus dominant the longest. Therefore, if two nodes begin to

transmit simultaneously, the node that sends a last

identifier bit as a zero (dominant) while the other nodes

send a one (recessive) retains control of the CAN bus and

goes on to complete its message. A dominant bit always

overwrites a recessive bit on a CAN bus [7].

Figure 3. CAN Arbitration

An example below illustrates arbitration between three

competing CAN nodes (see Figure 3). The figure displays

the CAN arbitration process that is handled automatically

by a CAN controller.

Three CAN nodes, node-1, node-2, and node-3 start a

transmission at the same time. It is shown that the 11-bit

message identifier for node-1 is 110 0101 1101 (𝐼𝑑 = 0 ×
65𝐷), message identifier for node-2 is 110 0111 0110
(𝐼𝑑 = 0 × 676), and message identifier for node-3 is 110

0101 1001 (𝐼𝑑 = 0 × 659).

According to the Carrier Sense Multiple Access with

Collision Detection and Arbitration on Message Priority

(CSMA/CD + AMP) access method, those three nodes had

to wait until the bus is free (Carrier Sense). When this is

detected, all of them send their dominant Start Of Frame

(SOF) bit (Multiple Access). Note that a transmitting node

constantly monitors each bit of its own transmission.

Throughout the frame, each CAN node will, via its

transceiver, read back the logical value which occurs on the

CAN bus and compare it with the transmitted logical value

(Collision Detection). The three dominant Start Of Frame

bits are superimposed on the bus and a dominant bus level

is read back by all those three nodes. Next, the MSB of the

identifier is sent. In the example, the MSB is recessive in

all three identifiers. Here, too, the recessive level appears

TRANSMISI : JURNAL ILMIAH TEKNIK ELEKTRO, 25, (3), JULI 2023

p-ISSN 1411-0814 e-ISSN 2407-6422

https://ejournal.undip.ac.id/index.php/transmisi DOI : 10.14710/transmisi.25.3.115-125 | Hal. 118

on the bus and is again recognized by all three nodes.

Therefore, no node notices the competing node (shown up

to identifier bit 6) until the first difference in the identifier

[8].

In the example, the first difference between two frames is

at identifier bit 5. Node-1 and node-3 send a dominant

level, node-2 sends a recessive level. According to the

protocol specification, a dominant level appears on the bus.

Node-1 and node-3 reads back the level that it had sent;

hence, it does not see a collision. Node-2 also reads back

the dominant level and compares it with the recessive level

that it had sent; therefore, it sees a Bit-Error. At this point,

node-2 recognizes that it has lost arbitration (Arbitration on

Message Priority) and immediately stops the transmission

of its own frame [8].

Next difference between two frames is at identifier bit 2.

Node-3 send a dominant level, node-1 sends a recessive

level. According to the protocol specification, a dominant

level appears on the bus. Node-3 reads back the level that

it had sent; hence, it does not see a collision. Node-1 also

reads back the dominant level and compares it with the

recessive level that it had sent; therefore, it sees a Bit-

Error. At this point, node-1 recognizes that it has lost

arbitration and immediately stops the transmission of its

own frame [8].

Furthermore, now node-1 and node-2 become receiver of

node-3’s frame, because the frame that has won the

arbitration may contain data that need to be processed by

node-1 and node-2 [8].

Thus, in those example, node-3 has won arbitration. This

is because node-3 has the lowest the binary message

identifier number (𝐼𝑑 = 0 × 659 =
110 0101 1001 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑠𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟).

Note that node-3 is the node that sends a last identifier bit

as a zero (dominant). See the difference between the four

LSBs 1101 for node-1 and the four LSBs 1001 for node-

3. Therefore, this node-3 will just continue on with the

message, without the message being destroyed or

corrupted by another node.

2.3. Bus Termination

Electrical signals on the bus are reflected at the ends of the

electrical line unless preventive actions are taken. Signal

reflection occurs when a signal is transmitted along a

transmission medium, such as a copper cable or an optical

fiber. Some of the signal power may be reflected back to

its origin rather than being carried all the way along the

cable to the far end. This happens because imperfections in

the cable cause impedance mismatches and non-linear

changes in the cable characteristics. These abrupt changes

cause some of the transmitted signal to be reflected. To

avoid mismatches when a node reads the bus electrical

status, signal reflections must be avoided. Terminating the

bus line with a termination resistor at both ends of the bus

and avoiding unnecessarily long stubs lines of the bus is

the best corrective action. The largest possible

simultaneous transmission rate and bus length line are

achieved by using a structure as close as possible to single

line structure and by terminating both ends of the line (this

layout is also referred to as linear). Specific

recommendations for this structure can be found in the

related standards (i.e. ISO11898-2 and -3). The method of

terminating CAN hardware varies depending on the

physical layer of the hardware itself (high-speed, low-

speed, single-wire, or software-selectable). For high-speed

CAN, both ends of the pair of signal wires (CAN H and

CAN L) must be terminated. The termination resistors on

the cable should match the nominal impedance of the cable

[9].

ISO 11898 requires a cable with a nominal impedance of

120 Ω, and therefore 120 Ω resistors should be used for

termination. If multiple devices are placed along the cable,

only the devices on the ends of the cable need termination

resistors [9].

Figure 4. Terminating a High-Speed Network.

Figure 4 above gives an example of how to terminate a

high-speed network. The termination can be of basic type

(a single resistor as in the figure) or of split type (two 60 Ω

resistors with an intermediate capacitor between 10 nF and

100 nF connected to ground) [9].

2.4. Details of a CAN Bus

The data link and physical signalling layers, which are

normally transparent to a system operator, are included in

any controller (embedded or stand-alone) that implements

the CAN protocol. Connection to the physical medium is

then implemented through a line transceiver to form a

system node as shown in Figure 5 [7].

Figure 5. Details of a CAN Bus

TRANSMISI : JURNAL ILMIAH TEKNIK ELEKTRO, 25, (3), JULI 2023

p-ISSN 1411-0814 e-ISSN 2407-6422

https://ejournal.undip.ac.id/index.php/transmisi DOI : 10.14710/transmisi.25.3.115-125 | Hal. 119

3. The System Overview

The temperature and relative humidity

monitoring system designed here will consist of

a CAN bus interface which consists of a CAN

bus line, several CAN nodes, several CAN

controllers, several CAN transceivers, several

sensors, one display device, and two terminating

resistors.

The CAN bus line will be of the form two lines bus.

One line is the CAN bus High line and the other is the CAN

bus Low line.

The first node is a receiver node. This node will be carried

out by an Arduino UNO R3. This board is the perfect board

to get familiar with electronics and coding. This versatile

microcontroller is equipped with the well-known

ATmega328P and the ATMega 16U2 Processor [10]. Next

node is a transmission node for temperature data. This will

also be carried out by an Arduino UNO board. And the

third node is a transmission node for humidity data. This

humidity node will be carried out by an Arduino® Nano.

This board is an intelligent development board designed for

building faster prototypes with the smallest dimension. At

the heart of the board is ATmega328 microcontroller

clocked at a frequency of 16 MHz The board offers 22

digital input/output pins, 8 analog pins, and a mini-USB

port [11].

For the CAN controller, the MCP2515 chip CAN

controllers are used. Microchip Technology’s MCP2515 is

a stand-alone Controller Area Network (CAN) controller

that implements the CAN specification, Version 2.0B. It is

capable of transmitting and receiving both standard and

extended data and remote frames. The MCP2515 has two

acceptance masks and six acceptance filters that are used

to filter out unwanted messages, thereby reducing the host

MCU’s overhead. The MCP2515 interfaces with

microcontrollers (MCUs) via an industry standard Serial

Peripheral Interface (SPI) [12].

Next is the CAN transceiver. The transceiver transmits and

receives the physical data to and from the bus. TJA1050

chip transceivers are used here. The TJA1050 is the

interface between the CAN controller and the physical

CAN bus. The device provides differential transmit

capability to the bus and differential receive capability to

the CAN controller. It is fully compatible to the “ISO

11898” standard [13].

Depicted in a diagram, CAN bus interface of the system

will look like Figure 6.

Figure 6. CAN Bus Interface of the Temperature and

Humidity Monitoring System

In Figure 6 above, the blocks indicated by node controllers

are the Arduino boards with their temperature & humidity

sensors and LCD display. While the blocks indicated by

XCVR are the TJA1050 CAN transceivers.

As mentioned above, the system will also have some means

for communicating with outside world. These are sensors

and a display device. For sensors, DHT11 humidity and

temperature sensors are used. DHT11 temperature &

humidity sensor features a temperature & humidity sensor

complex with a calibrated digital signal output. By using

the exclusive digital-signal-acquisition technique and

temperature & humidity sensing technology, it ensures

high reliability and excellent long-term stability. This

sensor includes a resistive-type humidity measurement

component and an NTC temperature measurement

component, and connects to a high-performance 8-bit

microcontroller, offering excellent quality, fast response,

anti-interference ability and cost-effectiveness [14].

For the display device, a 16 × 2 LCD with an I2C

interface is used. This is I2C interface 16x2 LCD display

module, a high-quality 2 line 16 character LCD module

with on-board contrast control adjustment, backlight and

I2C communication interface

4. Method

The method used in this research includes programming

the three nodes and assembling the various system’s parts.

For the programming, all the Arduino boards will be

programmed with Arduino IDE. Arduino is an open-source

electronics platform based on easy-to-use hardware and

software. Arduino boards are able to read inputs - light on

a sensor, a finger on a button, or a Twitter message - and

turn it into an output - activating a motor, turning on an

LED, publishing something online. We can tell our board

what to do by sending a set of instructions to the

microcontroller on the board. To do so, we use the Arduino

programming language (based on wiring), and the Arduino

Software (IDE), based on processing. Each board will be

programmed according to its function. Thus, in here there

will be three different Arduino programs.

TRANSMISI : JURNAL ILMIAH TEKNIK ELEKTRO, 25, (3), JULI 2023

p-ISSN 1411-0814 e-ISSN 2407-6422

https://ejournal.undip.ac.id/index.php/transmisi DOI : 10.14710/transmisi.25.3.115-125 | Hal. 120

For the hardware, all the parts of the system will be

assembled according to diagram in Figure 5 and Figure 6.

Thus, there are three readily programmed nodes will be

connected to the CAN bus line. Two nodes at the ends of

the line are the receiver node and the humidity node. The

temperature node is placed in the middle of the line,

tapping the line. There also will be two resistors act as

termination line resistors at the ends of the line.

Furthermore, we will have an experiment with the 11-bit

message identifier number. That is, the pair of message

identifier number (one for temperature message and the

other for humidity message) was varied several times. For

each pair, an experiment transmitting temperature dan

humidity data was done. The results were then observed on

the display device.

5. Results and Discussion

The results will also consist of two parts, the programming

results and the hardware results. The programming results

consists of three Arduino programs for the three nodes.

One program for each node. While hardware results will be

the assembled parts and the results from the LCD display.

5.1. Programming Results

There are three Arduino programs that has been written for

each node. First is the program listing for the receiver node,

whose flowchart is shown in Figure 7.

Figure 7. Flowchart for Receiver Node Program

From the flow chart above, the Arduino program listing for

the receiver was created as shown in Figure 8. An

explanation for each line is provided on the right.

It is shown that the receiver node has been programmed in

such a way that this node will only be able to receive and

display humidity data sent by humidity node and also

receive and display temperature data sent by temperature

node. This receiving node does not transmit data.

Figure 8. Arduino Program for Receiving Node

Some libraries are used for implementing SPI

communication, implementing CAN communication, and

using the LCD I2C .

After including libraries, LCD setting was done, and a

structure for storing CAN message was declared.

Inside void setup() is various settings for SPI, LCD,

and CAN. Inside void loop(), a statement for reading

the CAN messages sent by transmitters (CAN messages

contain temperature and humidity data) was created, and

integers were also created for storing the temperature and

humidity data. And some statements associated with the

LCD for displaying the data.

TRANSMISI : JURNAL ILMIAH TEKNIK ELEKTRO, 25, (3), JULI 2023

p-ISSN 1411-0814 e-ISSN 2407-6422

https://ejournal.undip.ac.id/index.php/transmisi DOI : 10.14710/transmisi.25.3.115-125 | Hal. 121

Next is the the program listing for the node transmitting

temperature data. The flowchart for this program is shown

in Figure 9.

From those flow chart, the Arduino program listing for this

temperature node was created as shown in Figure 10. An

explanation for each line is again provided on the right.

This temperature node has been programmed in such a way

that it will be able to transmit only temperature data

recorded by the DHT11 sensor.

Figure 9. Flowchart for Temperature Node Program

Some libraries are used for implementing SPI

communication, implementing CAN communication, and

using the DHT11 sensor.

Inside void setup() is various settings for SPI, DHT11,

and CAN. Inside void loop(), a statement for reading

temperature and storing it in an integer was created. Then,

it is shown that an example of message identifier for

temperature which is 0𝑥036 (𝐼𝑑 = 000 0011 0110). It is

also shown that CAN message length is 8 bytes, shown as

canMsg.data[0],canMsg.data[1],canMsg.data[2
],canMsg.data[3],canMsg.data[4],canMsg.data[
5],canMsg.data[6], and canMsg.data[7]. Each is

one byte long. This is in accordance with the structure of

the standard CAN which has 0 … 8 btyes data. The

temperature data is put on canMsg.data[0]. The other

bytes are filled with 0𝑥00. The void loop() ends with

a statement associated with MCP2515 for sending the

CAN message.

And finally, is the the program listing for the node

transmitting humidity data. The flowchart for this program

is shown in Figure 11.

From those flow chart, the Arduino program listing for this

temperature node was created as shown in Figure 12. An

explanation for each line is provided on the right.

This humidity node has been programmed in such a way

that it will be able to transmit only humidity data recorded

by the DHT11 sensor.

Figure 10. Arduino Program for Temperature Node

Figure 11. Flowchart for Humidity Node Program

TRANSMISI : JURNAL ILMIAH TEKNIK ELEKTRO, 25, (3), JULI 2023

p-ISSN 1411-0814 e-ISSN 2407-6422

https://ejournal.undip.ac.id/index.php/transmisi DOI : 10.14710/transmisi.25.3.115-125 | Hal. 122

Some libraries are used for implementing SPI

communication, for implementing CAN communication,

and for using the DHT11 sensor.

Figure 12. Arduino Program for Humidity Node

Inside void setup() is various settings for SPI, DHT11,

and CAN. Inside void loop(), a statement for reading

temperature and storing it in an integer was created. Then,

it is shown an example of message identifier for humidity

which is 0𝑥046 (𝐼𝑑 = 000 0100 0110). It is also shown

that CAN message length is 8 bytes, shown as

canMsg.data[0],canMsg.data[1],canMsg.data[2
],canMsg.data[3],canMsg.data[4],canMsg.data[
5],canMsg.data[6], and canMsg.data[7]. Each is

one byte long. This is in accordance with the structure of

the standard CAN which has 0 … 8 btyes data. The

temperature data is put on canMsg.data[1]. The other

bytes are filled with 0𝑥00. The void loop() again ends

with a statement associated with MCP2515 for sending the

CAN message.

5.2. Hardware Results

The assembled parts are shown in Figure 13. They are the

temperature node, the humidity node, the receiver node,

two DHT11 temperature & humidity sensors, an LCD,

three MCP2515 & TJA1050 modules (one module for each

node), and two bus termination resistors of magnitude 120

Ω.

Two nodes at the end of the CAN bus line are the

temperature node and the receiver node. The humidity

node is placed in the middle of the line, tapping the line.

The two termination 120 Ω resistors shows that this system

employs a parallel termination scheme. Parallel

termination is one of the most prevalent termination

schemes today. Parallel termination employs a resistor

across the differential lines at the far (receiver) end of the

transmission line to eliminate all reflections [15].

Figure 13. Assembled of the Three Nodes

Table 1 below shows the results when the pair of message

identifier number (one 𝑖𝑑 for temperature message and the

other 𝑖𝑑 for humidity message) was varied several times.

Table 1. LCD Results for Various Pair of Message

Identification Number

LCD Display

Results
Humidity Node

Message Id Number
Temperature Node
Message Id Number

Hum (82%)

Hum (82%)
𝐼𝑑 = 0 × 001
𝐼𝑑 = 0 × 011
𝐼𝑑 = 0 × 022
𝐼𝑑 = 0 × 033
𝐼𝑑 = 0 × 044
𝐼𝑑 = 0 × 055
𝐼𝑑 = 0 × 066
𝐼𝑑 = 0 × 077
𝐼𝑑 = 0 × 043
𝐼𝑑 = 0 × 039
𝐼𝑑 = 0 × 088
𝐼𝑑 = 0 × 099
𝐼𝑑 = 0 × 0𝐴𝐴
𝐼𝑑 = 0 × 0𝐵𝐵
𝐼𝑑 = 0 × 0𝐶𝐶
𝐼𝑑 = 0 × 0𝐷𝐷
𝐼𝑑 = 0 × 0𝐸𝐸
𝐼𝑑 = 0 × 0𝐹𝐹

𝐼𝑑 = 0 × 0𝐹𝐹
𝐼𝑑 = 0 × 0𝐸𝐸
𝐼𝑑 = 0 × 0𝐷𝐷
𝐼𝑑 = 0 × 0𝐶𝐶
𝐼𝑑 = 0 × 0𝐵𝐵
𝐼𝑑 = 0 × 0𝐴𝐴
𝐼𝑑 = 0 × 099
𝐼𝑑 = 0 × 088
𝐼𝑑 = 0 × 046
𝐼𝑑 = 0 × 036
𝐼𝑑 = 0 × 077
𝐼𝑑 = 0 × 077
𝐼𝑑 = 0 × 066
𝐼𝑑 = 0 × 055
𝐼𝑑 = 0 × 044
𝐼𝑑 = 0 × 033
𝐼𝑑 = 0 × 022
𝐼𝑑 = 0 × 011

Hum (82%)

Hum (82%)

Hum (82%)

Hum (82%)
Hum (82%)

Hum (82%)

Hum (82%)

Temp(28℃)

Temp(28℃)

Temp(28℃)

Temp(28℃)

Temp(28℃)

Temp(28℃)

Temp(28℃)

Temp(28℃)

Temp(28℃)

When the system was turned on for the first time, the LCD

first displays the welcome message that has been written in

the program for receiver node. Then, the LCD will display

the magnitude of temperature or the magnitude of relative

humidity measured by the DHT sensor, depending on the

message 𝑖𝑑. The magnitude displayed for relative humidity

were 82% and for the temperature were 28℃.

DHT 11
Sensor

Termination
Resistorss

DHT 11
Sensor

Temperature

Node
Resistors

I2C LCD

Humidity
Node

Resistors

Receiver
Node

Resistors

MCP2515 &
TJA1050

MCP2515 &

TJA1050

MCP2515 &
TJA1050

TRANSMISI : JURNAL ILMIAH TEKNIK ELEKTRO, 25, (3), JULI 2023

p-ISSN 1411-0814 e-ISSN 2407-6422

https://ejournal.undip.ac.id/index.php/transmisi DOI : 10.14710/transmisi.25.3.115-125 | Hal. 123

When at another times the magnitude of the relative

humidity and the temperature were monitored with this

system and then the results were compared with those

recorded from computer screen, the following results were

obtained

Tabel 2. Magnitude of Temperature & Humidity Recorded

Compared with Computer Recorded

Parameter
This System

Measurements
Results Recorded on

Computer Screen
Temperature 25℃ 24℃
Humidity 80% 74%

It is shown in Table 2 above, for temperature measurement,

this CAN system’s measurement records 25℃, while

magnitude of 24℃ was recorded on the computer screen.

And for relative humidity measurement, this system’s

measurement records 80% and the computer screen

records 74%. There were therefore some errors of

approximately 4% and 7.5% for temperature measurement

and relative humidity measurement, respectively

Still from Table 1, it can be seen that the LCD always

diplays messages with a lower identification number. For

example, when the humidity message has an 𝐼𝑑 = 0 ×
001 (𝐼𝑑 = 000 0000 0001) and the temperature message

has an 𝐼𝑑 = 0 × 0𝐹𝐹 (𝐼𝑑 = 000 1111 1111), the LCD

displays the humidity data with magnitude 82%. On the

other hand, when the humidity message has an 𝐼𝑑 = 0 ×
0𝐹𝐹 (𝐼𝑑 = 000 1111 1111) and temperature message

has an 𝐼𝑑 = 0 × 011 (𝐼𝑑 = 000 0001 0001), the LCD

displays the temperature data with magnitude 28℃. Thus,

the lower the binary message identifier number, the higher

its priority. Even when the two message identification

numbers are quite close together (for example, in the Table

1 humidity message 𝐼𝑑 = 0 × 039 (𝐼𝑑 =
000 0011 1001) and temperature message 𝐼𝑑 = 0 ×
036 (𝐼𝑑 = 000 0011 0110)), the temperature message

with its lower binary message identifier number still win

the arbitration. Thus, messages which has a last identifier

bit as a zero (dominant) is always displayed. See the

difference between the four LSBs 1001 for humidity

message and 0110 for temperature message.

However, when a delay was added at the end of the

transmitter program (either humidity transmitter program

or temperature transmitter program), something different

was observed at the LCD. That is, if we add a delay

statement after the statement for sending the message, (i.e.

put a delay statement delay(1000); after the line

mcp2515.sendMessage(&canMsg);), the message

which lost arbitration will sometimes be displayed. The

LCD will for a while displaying the lost arbitration

message, and then back again displaying the winning

message.

Figure 14 below shows one example of LCD display when

it is displaying a temperature data.

Figure 14. LCD Displaying Temperature Data Measured

from the Vicinity of DHT 11 Sensor.

5.3. Discussions

From the results, the hardware and programming results, it

was shown that the overall system works according to the

initial specification and plans. The LCD was able to display

continuously relative humidity value (82%) and

temperature value (28℃) according to the message

priority. A message with lower identification number is the

highest priority message on a network. When the first time

the system was turned on, after displaying the welcome

message, LCD always display the message with lower

identification number.

Table 3. Comparison with Other Research Results

Parameter
Other Research

This Research
Xu Yan et al [3] Q.Zhu et [4]

Sensor
SHT75 Temp &

Humidity
Temp &
Humidity

DHT11 Temp &
Humidity sensor in
several locations

Node
Controller

C8051F060 MCU
AT91SAM7X256

MCU
ATMega 328 MCU

Display Computer - LCD
Bus CAN Bus CAN Bus CAN Bus

Results
Data shown on

Computer
-

Data shown on
LCD

In essence, the results show that after the DHT11 digital

temperature and humidity sensors can measure the

temperature and humidity, and those data were succesfully

sent to the receiver via the CAN controller, the CAN

transceiver, and the CAN bus. The system has also been

proved stable and reliable.

For comparison purposes, various results from some other

researches are also included, as shown in Table 3, Table 4,

and Table 5.

It can be shown in those three tables, that there are several

parameters that distinguish this research from other

studies. Such as the type of sensors used, the node

controllers, and type of display.

TRANSMISI : JURNAL ILMIAH TEKNIK ELEKTRO, 25, (3), JULI 2023

p-ISSN 1411-0814 e-ISSN 2407-6422

https://ejournal.undip.ac.id/index.php/transmisi DOI : 10.14710/transmisi.25.3.115-125 | Hal. 124

Table 4. Comparison with Other Research Results

Parameter

Other Research
This Research Li Hong Zhang et

al [5]
Hyun Lee [16]

Sensor Temperature sensor
Various

sensors on
UAV

DHT11 Temp &
Humidity sensor

in several
locations

Node
Controller

Zigbee network
STM32 WBA

-
ATMega 328

Microcontroller
Display Computer - LCD I2C

Bus CAN Bus CAN Bus CAN Bus

Results
Data shown on

Computer
-

Data shown on
LCD

Table 5. Comparison with Other Research Results

Paramete

r

Other Research
This Research

T.P. Presi [17] Guoqing Lu et al [18]

Sensor
Temp, CO

level, battery
voltage

Temp & Humidity
sensors in warehouse

DHT11 Temp &
Humidity sensor

in several
locations

Node
Controller

PIC MCU Microcontroller
ATMega 328

Microcontroller
Display - Computer monitor LCD I2C

Bus CAN Bus CAN Bus CAN Bus

Results -
Data on Computer

monitor
Data shown on

LCD

In Table 4 for example, Hyun Lee’s work is shown [16]

which proposes UAV (Unmanned Aerial Vehicle) engine

control monitoring system using a dynamic ID application

and a scheduling method of CAN network sensors which

collect the temperatures, pressure, vibration, and fuel level

of UAV engine through the network.

While in Table 5 are the results of T.P. Presi’s work [17].

It is a project that is aimed at the implementation of CAN

protocol using PIC for vehicle monitoring system. The

main feature of the system includes monitoring of various

vehicle parameters such as temperature, presence of CO

level in the exhaust, and battery voltage. And Guoqing Lu

et al’s results [18] which presents a new method of the

monitoring and controlling system for the great warehouse.

Where the parameters such as temperature and humidity

can be get, modified and displayed.

Thus, there some other researches which are similar with

this work, in that they are also using this CAN network.

The differences are in the measured objects (applications),

the type of sensors used, the processors and the CAN

electronic chips used, and also the device for displaying the

results

In the future, this monitoring system in this research could

be modified such that the number of transmission nodes

becomes more than two nodes. In other word, a number of

measurement points were added along the bus. The

variable to be measured could be made uniform. For

example, all consists of temperature measurements or all

of humidity measurements. Thus, we could have single

variable (single parameter) measurement with a lot of

measuring points.

Another option could be for example, some of the

measurements can be made as temperature measurements,

some other are humidity measurements, and the remaining

are of pressure measurements and flow measurements.

This time, we have several parameter measurements with a

lot of measuring points. In both cases, there are now more

than two messages with their respective message

identification numbers

6. Conclusions

From the experiment, it can be concluded that the overall

system functions according to specifications. The

temperature node can transmit its temperature data along

the bus. The humidity node can also transmit its humidity

data along the bus. The receiver node can then display

those data with an LCD. In essence, the CAN bus is a

fieldbus network that can connect many field devices

together in a plant network. This research has successfully

utilized this CAN bus in designing the temperature and

humidity monitoring systems consisting of several nodes.

Only by using a pair of cable, many field devices that

typically used in process control applications can be

connected together and can be made to communicate with

each other. This is advantageous in that it is simple and low

cost since all nodes communicate via a single CAN system

instead of via direct complex analogue signal lines -

reducing errors, weight, wiring and costs. Another

advantage of this CAN bus system is that the system

designer can determine the allocation of message priority.

Some designers maybe agree on the significance of certain

messages, so prioritize them. And finally, the most

important thing is that this system is stable and reliable.

References

[1]. Curtis D. Johnson. Process Control Instrumentation

Technology. Sixth Edition. Columbus, Ohio: Prentice
Hall, 2000, pp. 165-166.

[2]. J. da Silva Sa, J. J. da Silva, M. G. Wanzeller and J. S. da

Rocha Neto, "Monitoring of temperature using smart

sensors based on CAN architecture," 15th International
Conference on Electronics, Communications and

Computers (CONIELECOMP'05), Puebla, Mexico,

2005, pp. 218-222, doi: 10.1109/CONIEL.2005.51.

[3]. Xu Yan, Guo Tao, Zhu Jie and Chen Wei, "Based on
single-chip microcomputer temperature and humidity

data acquisition system design," Proceedings of 2011

International Conference on Electronics and
Optoelectronics, Dalian, 2011, pp. V2-310-V2-313, doi:

10.1109/ICEOE.2011.6013243.

[4]. Q. Zhu, D. Zhu and X. Su, "Distributed remote

temperature monitoring and acquisition system based on
CAN bus," 2010 Prognostics and System Health

Management Conference, Macao, China, 2010, pp. 1-4,

doi: 10.1109/PHM.2010.5413439.

TRANSMISI : JURNAL ILMIAH TEKNIK ELEKTRO, 25, (3), JULI 2023

p-ISSN 1411-0814 e-ISSN 2407-6422

https://ejournal.undip.ac.id/index.php/transmisi DOI : 10.14710/transmisi.25.3.115-125 | Hal. 125

[5]. L. Zhang, L. Sun and W. Lu, "A Temperature Monitoring

System of Power Cable Joints Based on the Combining
of CAN Wired Transmission and ZigBee Wireless

Network," 2010 2nd International Conference on

Information Engineering and Computer Science, Wuhan,

China, 2010, pp. 1-4, doi:

10.1109/ICIECS.2010.5677661.

[6]. Franklyn W Kirk, Thomas A. Weedon, Philip Kirk.

Instrumentation. Fifth Edition. USA: American Technical

Publishers Inc, 2010, pp. 346 - 347
[7]. Steve Corrigan. Introduction to the Controller Area

Network (CAN). Texas Instrument. Application Report.

Report number: SLOA101B. 2002.

[8]. Wolfhard Lawrenz. CAN System Engineering – From
Theory to Practical Applications. Second Edition

Wolfenbuttel, Germany: Springer, 2013, pp. 8 – 9.

[9]. Marco Di Natale, Haibo Zeng, Paolo Giusto, Arkadeb

Ghosal. Understanding and Using the Controller Area
Network Communication Protocol - Theory and Practice.

First Edition. Palo Alto, CA: Springer, 2012, pp. 5 – 9.

[10]. Arduino CC. Arduino® R3. Arduino CC, Product

Reference Manual. Number: SKUA000066. 2023
[11]. Arduino CC. Arduino® Nano. Arduino CC. Product

Reference Manual. Number: SKUA000005, 2023

[12]. Microchip. MCP2515 Stand-Alone CAN Controller with

SPI Interface. Microchip Technology Inc. Product
Manual. Number: DS20001801J. 2018

[13]. Phillips Semiconductors. TJA1050 High Speed CAN

Transceiver. Phillips Semiconductors. Product
Specification. 2003

[14]. Mouser Electronics. DHT11 Humidity & Temperature

Sensor. Mouser Electronics. Data Sheet.

[15]. Texas Instruments. AN903-A Comparison of Differential
Termination Techniques. Texas Instruments. Application

Report. Report number: SNLA034B. 2013

[16]. H. Lee, "UAV Engine Control Monitoring System based

on CAN Network," 2020 20th International Conference
on Control, Automation and Systems (ICCAS), Busan,

Korea (South), 2020, pp. 820-823, doi:

10.23919/ICCAS50221.2020.9268244.

[17]. T. P. Presi, "Design and development Of PIC
microcontroller based vehicle monitoring system using

Controller Area Network (CAN) protocol," 2013

International Conference on Information Communication

and Embedded Systems (ICICES), Chennai, India, 2013,
pp. 1070-1076, doi: 10.1109/ICICES.2013.6508232.

[18]. G. Lu, G. Gao, L. Hu, R. Hao and D. Liu, "Designed of

Remotely Monitoring System of Great Warehouse Based

on CAN Bus," 2008 International Conference on
MultiMedia and Information Technology, Three Gorges,

China, 2008, pp. 420-422, doi: 10.1109/MMIT.2008.116.

