skip to main content

QUALITATIVE STUDY OF FRAUD IN HEALTH SERVICES AND LEGAL FRAMEWORK IN INDONESIA: A LITERATURE REVIEW

*Diaz Alifarizki Zuvarcan orcid  -  Master of Law Program, Universitas Muhammadiyah Surakarta, Indonesia
Wardah Yuspin  -  Faculty of Law, Universitas Muhammadiyah Surakarta, Indonesia
Arief Budiono  -  Faculty of Law, Universitas Muhammadiyah Surakarta, Indonesia
Open Access Copyright (c) 2025 Diponegoro Law Review under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Health sector fraud is a significant global challenge that undermines health systems by exploiting financial gains through methods like upcoding and false insurance claims. Despite legal updates, healthcare fraud remains a persistent issue. This study systematically examines fraud detection techniques and the legal framework, providing insights to guide policymakers in developing effective prevention strategies in Indonesia. This research employs a doctrinal research methodology with a literature review approach. Using secondary data from Scopus, PubMed, ScienceDirect, and Google Scholar, this study investigates the patterns, causes, and effects of fraud in the Indonesian healthcare system. This paper reviews nine selected articles and compares them with updated Indonesian legal instruments, mainly Law No. 17 of 2023 on Healthcare and Law No. 1 of 2023 on Criminal Code. The findings demonstrate that although legislative reforms have introduced stricter provisions, their implementation remains inconsistent due to lack of oversight and technology. This study proposes integrative strategies, such as digital audit systems, strengthening legislation, and public reporting mechanisms, to improve fraud prevention. It contributes to the debate by identifying gaps in enforcement and proposing regulatory and technological solutions to strengthen the transparency and integrity of the Indonesian healthcare system.

Fulltext View|Download
Keywords: Fraud; Healthcare Services; Legal Framework

Article Metrics:

  1. ACFE. “Occupational Fraud 2022: A Report to the Nations,” 2022. https://acfepublic.s3.us-west-2.amazonaws.com/2022+Report+to+the+Nations.pdf
  2. ———. “Occupational Fraud 2024: A Report to the Nations,” 2024. https://legacy.acfe.com/report-to-the-nations/2024/
  3. ———. “Report to the Nations 2018 Global Study on Occupational Fraud and Abuse,” 2018. https://www.acfe.com/fraud-resources/report-to-the-nations-archive
  4. ———. “Report to the Nations 2020 Global Study on Occupational Fraud and Abuse,” 2020. https://legacy.acfe.com/report-to-the-nations/2020/
  5. ———. “Report to the Nations on Occupational Fraud and Abuse,” 2016. https://www.acfe.com/fraud-resources/report-to-the-nations-archive
  6. ———. “Survei Fraud Indonesia 2019.” Jakarta, May 2020. https://acfe-indonesia.or.id/wp-content/uploads/2021/02/SURVEI-FRAUD-INDONESIA-2019.pdf
  7. Bauder, R., T.M. Khoshgoftaar, and N. Seliya. “A Survey on the State of Healthcare Upcoding Fraud Analysis and Detection.” Health Services and Outcomes Research Methodology 17, no. 1 (2017): 31–55. https://doi.org/10.1007/s10742-016-0154-8
  8. Bauder, R.A., and T.M. Khoshgoftaar. “The Effects of Varying Class Distribution on Learner Behavior for Medicare Fraud Detection with Imbalanced Big Data.” Health Information Science and Systems 6, no. 1 (2018). https://doi.org/10.1007/s13755-018-0051-3
  9. Capelleveen, Guido van, Mannes Poel, Roland M. Mueller, Dallas Thornton, and Jos van Hillegersberg. “Outlier Detection in Healthcare Fraud: A Case Study in the Medicaid Dental Domain.” International Journal of Accounting Information Systems 21 (June 1, 2016): 18–31. https://doi.org/10.1016/j.accinf.2016.04.001
  10. Choi, J., J. Kim, and H. Lee. “Hybrid Fraud Detection Model: Detecting Fraudulent Information in the Healthcare Crowdfunding.” KSII Transactions on Internet and Information Systems 16, no. 3 (2022): 1006–27. https://doi.org/10.3837/tiis.2022.03.014
  11. Christian, Natalis, and Piere Ricardo. “Kajian Impact of Fraud: Nasional Dan Internasional.” Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA) 6, no. 2 (May 15, 2022): 102–17. https://doi.org/10.31955/MEA.V6I2.1978
  12. Fatimah, Rizki Nurul, Misnaniarti, and Risma Adlia Syakurah. “Potential Fraud in The Implementation of National Health Insurance in The Health Sector: Systematic Review.” JMMR (Jurnal Medicoeticolegal Dan Manajemen Rumah Sakit) 10, no. 3 (2021): 255–70. https://doi.org/10.18196/JMMR.V10I3.10825
  13. Fitriana, Else Nur, and Indrawati Yuhertiana. “Analysis of Fraud in the Indonesian Public Sector through Three Behavioral Lenses.” National Conference on Accounting and Fraud Auditing 2, no. 2 (2020). https://doi.org/doi.org/10.31326/.v2i2.783
  14. Haque, M.E., and M.E. Tozal. “Identifying Health Insurance Claim Frauds Using Mixture of Clinical Concepts.” IEEE Transactions on Services Computing 15, no. 4 (2022): 2356–67. https://doi.org/10.1109/TSC.2021.3051165
  15. Inggi, Putri Galuh, and Anhari Achadi. “Evaluation of Fraud Prevention Policies in the National Health Insurance System in Indonesia: Narrative Literature Review.” Media Publikasi Promosi Kesehatan Indonesia (MPPKI) 7, no. 10 (October 5, 2024): 2449–57. https://doi.org/10.56338/mppki.v7i10.6164
  16. Johnson, J.M., and T.M. Khoshgoftaar. “Medicare Fraud Detection Using Neural Networks.” Journal of Big Data 6, no. 1 (2019). https://doi.org/10.1186/s40537-019-0225-0
  17. Joudaki, Hossein, Arash Rashidian, Behrouz Minaei-Bidgoli, Mahmood Mahmoodi, Bijan Geraili, Mahdi Nasiri, and Mohammad Arab. “Improving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study.” International Journal of Health Policy and Management 5, no. 3 (2016): 165–72. https://doi.org/10.15171/ijhpm.2015.196
  18. KPK. “Laporan Tahunan KPK 2023.” Jakarta, 2023. https://cms.kpk.go.id/storage/4200/Laporan-Tahunan-KPK-2023.pdf
  19. Kustinah, Siti. “Investigating Fraud and Corrupt Practices in Indonesia.” Journal of Governance 7, no. 1 (April 20, 2022). https://doi.org/10.31506/jog.v7i1.14520
  20. Lu, Jiangtao, Kaibiao Lin, Ruicong Chen, Min Lin, Xin Chen, and Ping Lu. “Health Insurance Fraud Detection by Using an Attributed Heterogeneous Information Network with a Hierarchical Attention Mechanism.” BMC Medical Informatics and Decision Making 23, no. 1 (December 1, 2023). https://doi.org/10.1186/s12911-023-02152-0
  21. Mardani, S., and H. Moradi. “Using Graph Attention Networks in Healthcare Provider Fraud Detection.” IEEE Access, 2024. https://doi.org/10.1109/ACCESS.2024.3425892
  22. Mary, A.J., and S.P.A. Claret. “Imbalanced Classification Problems: Systematic Study and Challenges in Healthcare Insurance Fraud Detection.” In Proceedings of the 5th International Conference on Trends in Electronics and Informatics, ICOEI 2021, 1049–55, 2021. https://doi.org/10.1109/ICOEI51242.2021.9452828
  23. Masitah, Dewi. “Analysis of the Effect of Fraud Pentagon on Financial Statement Fraud Using M-Score and F-Score.” Indonesian Journal of Innovation Studies 25, no. 4 (June 14, 2024). https://doi.org/10.21070/ijins.v25i4.1142
  24. Matloob, I., S.A. Khan, R. Rukaiya, M.A.K. Khattak, and A. Munir. “A Sequence Mining-Based Novel Architecture for Detecting Fraudulent Transactions in Healthcare Systems.” IEEE Access 10 (2022): 48447–63. https://doi.org/10.1109/ACCESS.2022.3170888
  25. Republik Indonesia. Undang-Undang Nomor 1 Tahun 2024 tentang Perubahan Kedua Atas Undang-Undang Nomor 11 Tahun 2008 tentang Informasi dan Transaksi Elektronik, Pub. L. No. 1 (2024). https://peraturan.bpk.go.id/details/274494/uu-no-1-tahun-2024
  26. ———. Undang-Undang (UU) Nomor 1 Tahun 2023 tentang Kitab Undang-Undang Hukum Pidana, Pub. L. No. 1 (2023). https://peraturan.bpk.go.id/Details/234935/uu-no-1-tahun-2023
  27. ———. Undang-Undang (UU) Nomor 17 Tahun 2023 tentang Kesehatan, Pub. L. No. 17 (2023). https://peraturan.bpk.go.id/details/258028/uu-no-17-tahun-2023
  28. Ridwan, Said Munadi, Heru Fahlevi, and Nadirsyah. “Fraud Prevention System with Whistleblowing System in Health Services: A Systematic Review.” Jurnal Jaminan Kesehatan Nasional 4, no. 1 (June 30, 2024): 13–25. https://doi.org/10.53756/JJKN.V4I1.182
  29. Solehuddin, Solehuddin, Ladito Risang Bagaskoro, and Ria Casmi Arrsa. “Fraud Prevention Strategy Framework Related to Government Inventory Towards Good Governance.” Mendapo: Journal of Administrative Law 4, no. 2 (June 1, 2023): 106–33. https://doi.org/10.22437/MENDAPO.V4I2.24782
  30. Sri, Tatik, Hartati Rumah, Sakit Umum, Daerah Menggala, and Tulang Bawang. “Pencegahan Kecurangan (Fraud) Dalam Pelaksanaan Program Jaminan Kesehatan Pada Sistem Jaminan Sosial Kesehatan (SJSN) (Studi Di Rumah Sakit Umum Daerah Menggala Tulang Bawang).” Fiat Justisia: Jurnal Ilmu Hukum 10, no. 4 (May 29, 2016): 715–32. https://doi.org/10.25041/FIATJUSTISIA.V10NO4.808
  31. Sukma, Dara Pustika, Adi Sulistiyono, and Widodo Tresno Novianto. “Fraud in Healthcare Service.” SHS Web of Conferences 54 (2018): 03015. https://doi.org/10.1051/shsconf/20185403015
  32. Syafrawati, Syafrawati, Rizanda Machmud, Prof. Syed Mohammed Aljunid, and Rima Semiarty. “Incidence and Root Cause of Upcoding in The Implementation of Social Health Insurance in Rural Province Hospital in Indonesia.” Asia Pacific Fraud Journal 5, no. 1 (June 20, 2020): 56. https://doi.org/10.21532/apfjournal.v5i1.135
  33. Thaifur, Andi Yaumil Bay R., M. Alimin Maidin, Andi Indahwaty Sidin, and Amran Razak. “How to Detect Healthcare Fraud? ‘A Systematic Review.’” Gaceta Sanitaria 35 (January 1, 2021): S441–49. https://doi.org/10.1016/j.gaceta.2021.07.022
  34. Timofeyev, Yuriy, and Mihajlo Jakovljevic. “Editorial: Fraud and Corruption in Healthcare.” Frontiers in Public Health 10 (June 1, 2022): 921254. https://doi.org/10.3389/FPUBH.2022.921254
  35. Tjahjani, Fera, Briantama Maulidza Rizky, Widanarni Pudjiastuti, and Nawang Kalbuana. “Fraud Pentagon Theory: Indication Toward Fraudulent Financial Reporting on Non-Banking Sector.” Business and Accounting Research (IJEBAR) Peer Reviewed-International Journal 6 (2022). https://doi.org/https://doi.org/10. 29040/ijebar.v6i3.6026

Last update:

No citation recorded.

Last update: 2025-07-16 20:28:09

No citation recorded.