skip to main content

A GIS TOOLKIT FOR AUTOMATING DESCRIPTIVE STATISTIC COMPUTATIONS FOR AIR QUALITY MODELING

*Andreas Marios Georgiou  -  Enalia Physis Environmental Research Center (ENALIA), Cyprus
Themis Kontos  -  University of the Aegean, Department of the Environment, Greece

Citation Format:
Abstract
A GIS toolset was developed to support spatial analysis functions, visualization and extraction of a variety of input variables for air quality assessment. The developed toolset allows the automated processing of large amounts of ASCII data converting to points and raster data and the examination of the correlation among them. A case study was performed in Athens basin in Greece. Using the developed GIS toolset, topographic, climatic characteristics and air pollution conditions as well correlations were derived by processing the input data. In addition, thematic maps illustrating the spatial distribution of each parameter were extracted.  The developed GIS toolset greatly reduced the time and effort needed to process the GIS data, and provided a useful tool for a wide variety of environmental applications. The tool uses ArcObjects as the programming language to incorporate equations for statistical analysis in a monthly and a yearly time step. This versatile programming language allows advanced users to incorporate more complex formulations for more accurate results as detailed data is acquired to develop routines for calibration when reference data exist. Results verified the usefulness and feasibility of the developed platform.
Fulltext View|Download
Keywords: GIS; ArcObjects; Air Quality; Athens

Article Metrics:

  1. Batelaan, O., & Smedt, F. De. (2007). GIS-based recharge estimation by coupling surfacetextendash subsurface water balances. Journal of Hydrology, 337(3–4), 337–355. [https://www.sciencedirect.com/science/article/pii/S0022169407000765?via%3Dihub">Crossref]

  2. Beelen, R., Hoek, G., Pebesma, E., Vienneau, D., de Hoogh, K., & Briggs, D. J. (2009). Mapping of background air pollution at a fine spatial scale across the European Union. Science of The Total Environment, 407(6), 1852–1867. [https://doi.org/10.1016/j.scitotenv.2008.11.048">Crossref]

  3. Buliung, R. N., & Kanaroglou, P. S. (2006). A GIS toolkit for exploring geographies of household activity/travel behavior. Journal of Transport Geography, 14(1), 35–51. [https://doi.org/10.1016/j.jtrangeo.2004.10.008">Crossref]

  4. Chang, K.-T. (2007). Programming ArcObjects with VBA: A task-oriented approach. CRC Press.

  5. Desideri, U., Arcioni, L., & Tozzi, M. (2008). Feasibility study for a carbon capture and storage project in northern Italy. International Journal of Energy Research, 32(12), 1175–1183. [https://doi.org/10.1002/er.1454">Crossref]

  6. Elbir, T. (2004). A GIS based decision support system for estimation, visualization and analysis of air pollution for large Turkish cities. Atmospheric Environment, 38(27), 4509–4517. [https://doi.org/10.1016/j.atmosenv.2004.05.033">Crossref]

  7. Elbir, T., Mangir, N., Kara, M., Simsir, S., Eren, T., & Ozdemir, S. (2010). Development of a GIS-based decision support system for urban air quality management in the city of Istanbul. Atmospheric Environment, 44(4), 441–454. [https://doi.org/10.1016/j.atmosenv.2009.11.008">Crossref]

  8. España, S., Alcalá, F. J., Vallejos, Á., & Pulido-Bosch, A. (2011). ArcE: A GIS tool for modelling actual evapotranspiration. Computers & Geosciences, 37(9), 1468–1475. [https://doi.org/10.1016/j.cageo.2011.03.008">Crossref]

  9. España, S., Alcalá, F. J., Vallejos, Á., & Pulido-Bosch, A. (2013). A GIS tool for modelling annual diffuse infiltration on a plot scale. Computers & Geosciences, 54, 318–325. [https://doi.org/10.1016/j.cageo.2013.01.017">Crossref]

  10. ESRI. (2004). Geoprocessing in ArcGIS. Redlands, CA. [Crossref]

  11. Fameli, K.-M., & Assimakopoulos, V. D. (2016). The new open Flexible Emission Inventory for Greece and the Greater Athens Area (FEI-GREGAA): Account of pollutant sources and their importance from 2006 to 2012. Atmospheric Environment, 137, 17–37. [https://doi.org/10.1016/j.atmosenv.2016.04.004">Crossref]

  12. Flocas, H., Kelessis, A., Helmis, C., Petrakakis, M., Zoumakis, M., & Pappas, K. (2009). Synoptic and local scale atmospheric circulation associated with air pollution episodes in an urban Mediterranean area. Theoretical and Applied Climatology, 95(3–4), 265–277. [https://doi.org/10.1007/s00704-008-0005-9">Crossref]

  13. Georgiou, A., & Skarlatos, D. (2016). Optimal site selection for sitting a solar park using multi-criteria decision analysis and geographical information systems. Geoscientific Instrumentation, Methods and Data Systems, 5(2), 321–332. [https://doi.org/10.5194/gi-5-321-2016">Crossref]

  14. Guerreiro, C. B. B., Foltescu, V., & de Leeuw, F. (2014). Air quality status and trends in Europe. Atmospheric Environment, 98, 376–384. [https://doi.org/10.1016/j.atmosenv.2014.09.017">Crossref]

  15. Henschel, S., Tertre, A. Le, Atkinson, R. W., Querol, X., Pandolfi, M., Zeka, A., … Goodman, P. G. (2015). Trends of nitrogen oxides in ambient air in nine European cities between 1999 and 2010. Atmospheric Environment, 117, 234–241. [https://doi.org/10.1016/j.atmosenv.2015.07.013">Crossref]

  16. Hirabayashi, S., & Kroll, C. (2007). Automating regional descriptive statistic computations for environmental modeling. Computers & Geosciences, 33(4), 457–464. [https://doi.org/10.1016/j.cageo.2006.06.013">Crossref]

  17. Kalabokas, P. D., Papayannis, A. D., Tsaknakis, G., & Ziomas, I. (2012). A study on the atmospheric concentrations of primary and secondary air pollutants in the Athens basin performed by DOAS and DIAL measuring techniques. Science of The Total Environment, 414, 556–563. [https://doi.org/10.1016/j.scitotenv.2011.11.024">Crossref]

  18. Kambezidis, H. D., Weidauer, D., Melas, D., & Ulbricht, M. (1998). Air quality in the Athens basin during sea breeze and non-sea breeze days using laser-remote-sensing technique. Atmospheric Environment, 32(12), 2173–2182. [https://doi.org/10.1016/s1352-2310(97)00409-3">Crossref]

  19. Klemm, O., Ziomas, I. C., Balis, D., Suppan, P., Slemr, J., Romero, R., & Vyras, L. G. (1998). A summer air-pollution study in Athens, Greece. Atmospheric Environment, 32(12), 2071–2087. [https://doi.org/10.1016/s1352-2310(97)00424-x">Crossref]

  20. Mavrakou, T., Philippopoulos, K., & Deligiorgi, D. (2012). The impact of sea breeze under different synoptic patterns on air pollution within Athens basin. Science of The Total Environment, 433, 31–43. [https://doi.org/10.1016/j.scitotenv.2012.06.011">Crossref]

  21. Papanastasiou, D. K., & Melas, D. (2009). Climatology and impact on air quality of sea breeze in an urban coastal environment. International Journal of Climatology, 29(2), 305–315. [https://doi.org/10.1002/joc.1707">Crossref]

  22. Qun, Z., Yujin, Y., & Yuena, K. (2012). GIS Application System Design Applied to Information Monitoring. Physics Procedia, 25, 2235–2241. [https://doi.org/10.1016/j.phpro.2012.03.376">Crossref]

  23. Repapis, C., Zerefos, C., & Tritakis, B. (1977). On the Etesians over the Aegean. In Proc. Acad. Athens (Vol. 52, pp. 572–606).

  24. Righini, G., Cappelletti, A., Ciucci, A., Cremona, G., Piersanti, A., Vitali, L., & Ciancarella, L. (2014). GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data. Atmospheric Environment, 97, 121–129. [https://doi.org/10.1016/j.atmosenv.2014.08.015">Crossref]

  25. Sfetsos, A., & Vlachogiannis, D. (2013). An analysis of ozone variation in the Greater Athens Area using Granger Causality. Atmospheric Pollution Research, 4(3), 290–297. [https://doi.org/10.5094/apr.2013.032">Crossref]

  26. Taylor, D. A. (1997). Object technology: a manager’s guide. Addison-Wesley Longman Publishing Co., Inc.

  27. Vienneau, D., de Hoogh, K., & Briggs, D. (2009). A GIS-based method for modelling air pollution exposures across Europe. Science of The Total Environment, 408(2), 255–266. [https://doi.org/10.1016/j.scitotenv.2009.09.048">Crossref]

  28. Wang, S., Leduc, S., Wang, S., Obersteiner, M., Schill, C., & Koch, B. (2009). A new thinking for renewable energy model: Remote sensing-based renewable energy model. International Journal of Energy Research, 33(8), 778–786. [https://doi.org/10.1002/er.1518">Crossref]

  29. Xiaodan, W., Xianghao, Z., & Pan, G. (2010). A GIS-based decision support system for regional eco-security assessment and its application on the Tibetan Plateau. Journal of Environmental Management, 91(10), 1981–1990. [https://doi.org/10.1016/j.jenvman.2010.05.006">Crossref]

  30. Zeiler, M. (2001). Exploring ArcObjects. Redlands, CA. [Crossref]

  31. Zhan, X., & Huang, M.-L. (2004). ArcCN-Runoff: an ArcGIS tool for generating curve number and runoff maps. Environmental Modelling & Software, 19(10), 875–879. [https://doi.org/10.1016/j.envsoft.2004.03.001">Crossref]


Last update:

No citation recorded.

Last update: 2024-03-27 13:33:25

No citation recorded.