skip to main content

Digital Earth Surface Model for The Estimation of Solar Panel Electric Power Towards Renewable Energy

*Baskara Suprojo orcid  -  Sekolah Tinggi Pertanahan Nasional, Tata Bumi Street Number 5, Sleman District, DIY Province 55293, Indonesia
Westi Utami  -  Sekolah Tinggi Pertanahan Nasional, Tata Bumi Street Number 5, Sleman District, DIY Province 55293, Indonesia
Luthfi Adela Saraswati  -  Sekolah Tinggi Pertanahan Nasional, Tata Bumi Street Number 5, Sleman District, DIY Province 55293, Indonesia
Diffa Alifia Nabila  -  Sekolah Tinggi Pertanahan Nasional, Tata Bumi Street Number 5, Sleman District, DIY Province 55293, Indonesia
M Nazir Salim  -  Sekolah Tinggi Pertanahan Nasional, Tata Bumi Street Number 5, Sleman District, DIY Province 55293, Indonesia

Citation Format:
Abstract

The development of Geographic Information Systems (GIS) is able to create future value in various sectors and become a solution to the problem of limitations and disparity of electricity resources in Indonesia. This condition encourages GIS to be an analytical solution to the problem of electricity resources, which is by utilizing solar radiation as a source of renewable energy. This study aimed to optimize GIS in the use of solar radiation on the slope of building roofs which affects the estimated number and average electric power. This study used the mixed method. Research data includes aerial photos, which were analyzed digitally using the area of solar radiation and the slope angle of building roofs so as to produce a spatial analysis of the utilization of solar panels on Derawan Island. The data analysis showed that buildings in Derawan Island can produce 17,355.254 mWh per year with each building producing an average of 28,686 kWh annually. The result of the study is expected to encourage the realization of the use of renewable energy as part of the SDGs by utilizing solar panels as a source of electricity, replacing fossil-derived energy. This study is also expected to be applied in other small inhabited islands to support the sustainability of electricity use and increase the use of renewable energy.

 
Fulltext View|Download
Keywords: Renewable Energy, Digital Surface Model, GIS, Roof Slope, Solar Radiation

Article Metrics:

  1. Adam, L. (2016). Dinamika Sektor Kelistrikan Di Indonesia : Kebutuhan Dan Performa Penyediaan. Ekonomi Dan Pembangunan, 24 no. 1, 29–41.

  2. Administration, U. S. E. I. (2021). How Much Carbon Dioxide is Produced per Kilowatthour of U.S. Electricity Generation? Retrieved March 24, 2022, from eia website: https://www.eia.gov/tools/faqs/faq.php?id=74&t=11

  3. Ahmad, N. A., & Byrd, H. (2013). Empowering Distributed Solar PV Energy for Malaysian Rural Housing: Towards Energy Security and Equitability of Rural Communities. International Journal of Renewable Energy Development, 2(1), 59–68. [https://doi.org/10.14710/ijred.2.1.59-68">Crossref]

  4. Al-Shahri, O. A., Ismail, F. B., Hannan, M. A., Lipu, M. S. H., Al-Shetwi, A. Q., Begum, R. A., … Soujeri, E. (2021). Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. Journal of Cleaner Production, 284, 125465. [https://doi.org/10.1016/j.jclepro.2020.125465">Crossref]

  5. Al, W. E. I. E. T. (2022). Revisiting the Existence of the Global Warming Slowdown during the Early Twenty-First Century. 1853–1871. [https://doi.org/10.1175/JCLI-D-21-0373.1">Crossref]

  6. Aste, N., Caputo, P., Pero, C. Del, Ferla, G., Huerto-Cardenas, H. E., Leonforte, F., & Miglioli, A. (2020). A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system. Energy, 206, 118091. [https://doi.org/10.1016/j.energy.2020.118091">Crossref]

  7. Aybar, D., Forero, J., McGlynn, S., & Truong, D. (2018). The OUC Solar Sculpture.

  8. Boz, M. B., Calvert, K., Brownson, J. R. S., & others. (2015). An Automated Model for Rooftop PV Systems Assessment in ArcGIS Using LIDAR. Aims Energy, 3(3), 401–420. [https://doi.org/10.3934/energy.2015.3.401">Crossref]

  9. Constantino, G., Freitas, M., Fidelis, N., & Pereira, M. G. (2018). Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the aNALYSIS of GHG Emission Impacts. Energies, 11(10), 2806. [https://doi.org/10.3390/en11102806">Crossref]

  10. Desthieux, G., Carneiro, C., Camponovo, R., Ineichen, P., Morello, E., Boulmier, A., … Ellert, C. (2018). Solar Energy Potential Assessment on roOFTOPs and Facades in Large Built Environments based on Lidar Data, Image Processing, and Cloud Computing. Methodological Background, Application, and Validation in Geneva (Solar Cadaster). Frontiers in Built Environment, 14. [https://doi.org/10.3389/fbuil.2018.00014">Crossref]

  11. Dinas, & Pariwisata Berau. (2020). Rencana Kerja SKPD Tahun 2020.

  12. Eickemeier, P., Schlömer, S., Farahani, E., Kadner, S., Brunner, S., Baum, I., & Kriemann, B. (2014). Climate Change 2014 Mitigation of Climate Change Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

  13. Elavarasan, R. M., Pugazhendhi, R., Irfan, M., Mihet-Popa, L., Campana, P. E., & Khan, I. A. (2022). A novel Sustainable Development Goal 7 composite index as the paradigm for energy sustainability assessment: A case study from Europe. Applied Energy, 307, 118173. [https://doi.org/10.1016/j.apenergy.2021.118173">Crossref]

  14.  

  15. Erdiwansyah, E., Mahidin, M., Husin, H., Nasaruddin, N., Khairil, K., Zaki, M., & Jalaluddin, J. (2021). Investigation of availability, demand, targets, and development of renewable energy in 2017--2050: a case study in Indonesia. International Journal of Coal Science & Technology, 8(4), 483–499. [https://doi.org/10.1007/s40789-020-00391-4">Crossref]

  16. Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change : a review Intergovernmental Panel on Climate Change. Environmental Chemistry Letters, 18(6), 2069–2094. [https://doi.org/10.1007/s10311-020-01059-w">Crossref]

  17. Febriyanto, K., Rachman, A., & Rahman, F. F. (2021). The contribution of human error related to occupational accident among traditional divers. Gaceta Sanitaria, 35, S27--S29. [https://doi.org/10.1016/j.gaceta.2020.12.008">Crossref]

  18. Grubler, A., Wilson, C., Bento, N., Boza-kiss, B., Krey, V., Mccollum, D. L., … Valin, H. (2018). Without Negative Emission Technologies. Nature Energy, 3(June), 515–527. [https://doi.org/10.1038/s41560-018-0172-6">Crossref]

  19. Guno, C. S., Agaton, C. B., Villanueva, R. O., & Villanueva, R. O. (2021). Optimal Investment Strategy for Solar PV Integration in Residential Buildings: A case Study in the Philippines. International Journal of Renewable Energy Development, 10(1), 79–89. [https://doi.org/10.14710/ijred.2021.32657">Crossref]

  20. Guenther, M. (2018). A 100% renewable electricity scenario for the Java-Bali grid. International Journal of Renewable Energy Development, 7(1), 13–22. [https://doi.org/10.14710/ijred.7.1.13-22">Crossref]

  21. Hasan, M. H., Mahlia, T. M. I., & Nur, H. (2012). A Review on Energy Scenario and Sustainable Energy in Indonesia. Renewable and Sustainable Energy Reviews, 16(4), 2316–2328. [https://doi.org/10.1016/j.rser.2011.12.007">Crossref]

  22. Hayibo, K. S., Mayville, P., Kailey, R. K., & Pearce, J. M. (2020). Water Conservation Potential of Self-Funded Foam-based Flexible Surface-Mounted Floatovoltaics. Energies, 13(23), 6285.

  23. Hellin, J., & Fisher, E. (2019). The Achilles heel of climate-smart agriculture. Nature Climate Change, 9(7), 493–494.

  24. IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, 1(5). In Press.

  25. Khotama, R., Santoso, D. B., & Stefanie, A. (2020). Perancangan sistem optimasi smart solar electrical pada pembangkit listrik tenaga surya (PLTS) dengan metode tracking dual axis technology. Jurnal Ecotipe (Electronic, Control, Telecommunication, Information, and Power Engineering), 7(2), 78–84. [https://doi.org/10.33019/jurnalecotipe.v7i2.1887">Crossref]

  26. Kohak, P. ., Kandake, R. ., Patekar, V. ., & D.S, G. (2019). A Review on Design and Fabrication of Fatigue Testing Machine. 3(5), 5–14.

  27. Kurniawan, A., & Shintaku, E. (2021). Two-step Artificial Neural Network to Estimate the Solar Radiation at Java Island. International Journal of Electrical & Computer Engineering (2088-8708), 11(4). [https://doi.org/10.11591/ijece.v11i4.pp3559-3566">Crossref]

  28. Lai, C. S., Jia, Y., Lai, L. L., Xu, Z., McCulloch, M. D., & Wong, K. P. (2017). A Comprehensive Review on Large-Scale Photovoltaic System with Applications of Electrical Energy Storage. Renewable and Sustainable Energy Reviews, 78, 439–451.

  29. Lin, B., & Zhu, J. (2019). The Role of Renewable Energy Technological Innovation on Climate Change: Empirical Evidence from China. Science of the Total Environment, 659, 1505–1512. [https://doi.org/https:/doi.org/10.1016/j.scitotenv.2018.12.449">Crossref]

  30. Lucas, H., Carbajo, R., Machiba, T., Zhukov, E., & Cabeza, L. F. (2021). Improving Public Attitude Towards Renewable Energy. Energies, 14(15), 4521.

  31. Mallon, M. (2019). GIS and Mapping Melissa Mallon , Column Editor. 8959. [https://doi.org/10.1080/15228959.2019.1629857">Crossref]

  32. Missoum, M., & Loukarfi, L. (2021). Investigation of a Solar Polygeneration System for a MultiStorey Residential Building-Dynamic Simulation and Performance Analysis. International Journal of Renewable Energy Development, 10(3). [https://doi.org/10.14710/ijred.2021.34423">Crossref]

  33. Mitra, A. M. (2021). Photovoltaics advancements for Transition from Renewable to Clean Energy. 237. [https://doi.org/10.1016/j.energy.2021.121510">Crossref]

  34. Muryono, S., & Utami, W. (2020). Pemetaan Potensi Lahan Pertanian Pangan Berkelanjutan Guna Mendukung Ketahanan Pangan. BHUMI: Jurnal Agraria Dan Pertanahan, 6(2), 201–218.

  35. Nasruddin, Budiyanto, M. A., & Lubis, M. H. (2018). Hourly Solar Radiation in Depok, West Java, Indonesia (106.7942 Longitude,-6.4025 Latitude). IOP Conference Series: Earth and Environmental Science, 105(1), 12088. [https://doi.org/10.1088/1755-1315/105/1/012088">Crossref]

  36. Nieto, J., Carpintero, Ó., & Miguel, L. J. (2018). Less than 2 C? An economic-environmental evaluation of the Paris Agreement. Ecological Economics, 146, 69–84. [https://doi.org/10.1016/j.ecolecon.2017.10.007">Crossref]

  37. Nusantara, G. C., & Dewanto, B. G. (2020). Analisis Potensi Tenaga Surya pada Permodelan Bangunan Tiga Dimensi berdasarkan Data Open Street Map (Studi Kasus: Universitas Gajah Mada Yogyakarta). Elipsoida: Jurnal Geodesi Dan Geomatika, 3(01).

  38. Olek, M. (2021). The “ My Electricity ” Program as One of the Ways to Reduce CO 2 Emissions in Poland.

  39. Peraturan Pemerintah RI. (2018). Geospatial Information Agency Regulation Number 6 of 2018 about Technical Guidelines Basic Map Accuracy.

  40. Prayogo, I. P. H., Manoppo, F. J., & Lefrandt, L. I. R. (2020). Pemanfaatan Teknologi Unmanned Aerial Vehicle (UAV) Quadcopter Dalam Pemetaan Digital (Fotogrametri) Menggunakan Kerangka Ground Control Point (GCP). Jurnal Ilmiah Media Engineering, 10(1), 6.

  41. Rabuya, I., Libres, M., Abundo, M. L., & Taboada, E. (2021). Moving Up the Electrification Ladder in Off-Grid Settlements with Rooftop Solar Microgrids. Energies, 14(12), 3467.

  42. Ren, F., Tian, Z., Liu, J., & Shen, Y. (2020). Analysis of CO2 emission reduction contribution and efficiency of China’s solar photovoltaic industry: Based on Input-output perspective. Energy, 199, 117493. [https://doi.org/10.1016/j.energy.2020.117493">Crossref]

  43. Rigo, P. D., Rediske, G., Rosa, C. B., Gastaldo, N. G., Michels, L., Neuenfeldt Júnior, A. L., & Siluk, J. C. M. (2020). Renewable energy problems: Exploring the methods to support the decision-making process. Sustainability, 12(23), 10195.

  44. Rodriguez, R. S., & Barau, A. S. (2018). Sustainable Development Goals and climate. https://doi.org/10.1038/s41558-018-0098-9

  45. Santika, W. G., Urmee, T., Simsek, Y., Bahri, P. A., & Anisuzzaman, M. (2020). An assessment of energy policy impacts on achieving Sustainable Development Goal 7 in Indonesia. Energy for Sustainable Development, 59, 33–48. [https://doi.org/10.1016/j.esd.2020.08.011%5d">Crossref]

  46. Setyowati, A. B. (2021). Mitigating inequality with emissions? Exploring energy justice and financing transitions to low carbon energy in Indonesia. Energy Research & Social Science, 71, 101817. [https://doi.org/10.1016/j.erss.2020.101817">Crossref]

  47. Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275–291. [https://doi.org/10.1016/j.rser.2018.03.065">Crossref]

  48. Sharma, P., & Goyal, P. (2020). Materials Today : Proceedings Evolution of PV technology from conventional to nano-materials. Materials Today: Proceedings, (xxxx).[Crossref]

  49. Song, X., Huang, Y., Zhao, C., Liu, Y., Lu, Y., Chang, Y., & Yang, J. (2018). An approach for estimating solar photovoltaic potential based on rooftop retrieval from remote sensing images. Energies, 11(11), 3172. [https://doi.org/10.3390/en11113172">Crossref]

  50. Stathopoulos, T., Xypnitou, E., & Zisis, I. (2012). Wind Loads on Rooftop Solar Panel Systems: A Contribution to NBCC 2015. Proceeding of the 7th Workshop on Regional Harmonization of Wind Loading and Wind Environmental Specifications in Asia-Pacific Econo-Mies, Hanoi, Vietnam, 12–13.

  51. Stewart, M., & Martin, S. (2020). In : Unmanned Aerial Vehicles Unmanned Aerial Vehicles : Fundamentals, Components, Mechanics, and Regulations.

  52. Subakti, B. (2017). Pemanfaatan foto udara uav untuk pemodelan bangunan 3d dengan metode otomatis. Jurnal Spectra, 15(30), 15–30.

  53. Tarfi, A., & Amri, I. (2021). Reforma Agraria sebagai Jalan menuju Perdamaian yang Berkelanjutan di Aceh. BHUMI: Jurnal Agraria Dan Pertanahan, 7(2), 210–225. [https://doi.org/10.31292/bhumi.v7i2.509%5d">Crossref]

  54. Thibbotuwawa, A., Bocewicz, G., Radzki, G., Nielsen, P., & Banaszak, Z. (2020). UAV Mission Planning Resistant to Weather Uncertainty. Sensors.

  55. Wattana, B., & Aungyut, P. (2022). Impacts of Solar Electricity Generation on the Thai Electricity Industry. International Journal of Renewable Energy Development, 11(1). [https://doi.org/10.14710/ijred.2022.41059">Crossref]

  56. Wullandari, P., & Hakim, A. R. (2021). Analisis Regresi Temporal Dari Kinerja Mesin Pembuat Es Bertenaga Temporal Regression Analisys Of Solar-Powered Ice Maker Performance As The Function Of Solar Radiation And Air Temperature. (February 2017), 55–64.

  57. Xi-liu, Y., & Qing-xian, G. (2019). Contributions of natural systems and human activity to greenhouse gas emissions. Advances in Climate Change Research, 9(4), 243–252. [https://doi.org/10.1016/j.accre.2018.12.003">Crossref]

  58. Zawadzki, S. J., Vrieling, L., & van der Werff, E. (2022). What influences public acceptability of sustainable energy policies? The crucial role of funding and who benefits. Energy Research & Social Science, 87, 102468. [https://doi.org/10.1016/j.erss.2021.102468">Crossref]

  59.  


Last update:

No citation recorded.

Last update: 2024-04-15 20:09:22

No citation recorded.