skip to main content

Spatial Classification of Sentinel-2 Satellite Images with Machine Learning Approach

Dea Ratu Nursidah  -  Statistics Department, Faculty of Mathematics and Natural Science, Universitas Islam Indonesia, Indonesia., Indonesia
*Achmad Fauzan orcid scopus  -  Universitas Islam Indonesia, Indonesia
Marcelinus Alfafisurya Setya Adhiwibawa  -  Agricultural Data System Scientist, PCTC, Mondelez International, Indonesia

Citation Format:
Abstract
This study aims to classify buildings and non-buildings from Sentinel-2 Satellite Images using a Machine Learning approach. The limitations of the machine learning method for classification used in this study are the Support Vector Machine (SVM), Logistic Regression (LR), and Decision Tree (DT) methods. The three methods' results are compared to find the best method in the classification process. Furthermore, the proportion between buildings and non-buildings around Universitas Islam Indonesia was calculated from the best method’s results. The results are in the form of a classification with four indicators, namely the level of accuracy, sensitivity, specificity, and Area Under the Curve (AUC). We found that the best performing method in this study is the SVM method based on the average accuracy results, the smallest average variance difference in the variance of training and testing data, and three other indicators from the number of iterations accomplished. In the density proportion, we concluded that the closer the distance to UII campus, the greater the percentage of buildings. As for non-buildings, the farther from the center point, the higher the rate of non-buildings

Note: This article has supplementary file(s).

Fulltext |  common.other
Plagiarism Check with Turnitin
Subject
Type Other
  Download (3MB)    Indexing metadata
Keywords: Satellite Imagery; Classification; Machine Learning

Article Metrics:

  1. Adil, A. (2017). Geographic Information System. Yogyakarta: ANDI
  2. Antara, I. M. O. G., Kusmiyarti, T. B., Suyarto, R., & Wiyanti. (2022). Classification of Rice Field and Non-rice Field using Random ForestMethod on Sentinel-SAR Imagery, Case study in Kediri District, Tabanan Regency, Bali. Prosiding Seminar Nasional Geomatika VI, 245–252. Cibinong: Badan Informasi Geospasial RI
  3. Awaliyan, M. R., & Sulistioadi, Y. B. (2018). Classification of Land Cover in Satellite Imagery Sentinel-2a using The Tree Algorithm Method. ULIN: Jurnal Hutan Tropis, 2(2), 98–104
  4. Awangga, M. (2017). Introduction to Geographic Information Systems: Basic Concepts and GIS Builder Applications. Bandung: Rolly Book series in Geospatial Intellegence
  5. Bruy, A., & Svidzinska, D. (2015). QGIS with Example. Packt
  6. Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133–146. https://doi.org/10.1016/j.rse.2005.11.016
  7. Danoedoro, P. (2012). Pengantar Penginderaan Jauh Digital. Yogyakarta: ANDI
  8. Defiyanti, S., & Jajuli, M. (2015). Integration of Classification and Clustering Methods in Data Mining. Konferensi Nasional Informatika (KNF), 39–44
  9. Deng, C., & Wu, C. (2012). BCI: A biophysical composition index for remote sensing of urban environments. Remote Sensing of Environment, 127, 247–259. https://doi.org/10.1016/j.rse.2012.09.009
  10. Firmansyah, S., Gaol, J., & Susilo, S. B. (2019). Comparison of SVM and Decision Tree Classifier with Object Based Approach for Mangrove Mapping to Sentinel-2B Data on Gili Sulat, Lombok Timur. Journal of Natural Resources and Environmental Management, 9(3), 746–757. https://doi.org/10.29244/jpsl.9.3.746-757
  11. Flenniken, J. M., Stuglik, S., & Iannone, B. V. (2020). Quantum GIS (QGIS): An introduction to a free alternative to more costly GIS platforms. Edis, 2020(2), 7. https://doi.org/10.32473/edis-fr428-2020
  12. Fletcher, Karen., & European Space Agency. (n.d.). Sentinel-2 : ESA’s optical high-resolution mission for GMES operational services
  13. Guo, G., Wu, Z., Xiao, R., Chen, Y., Liu, X., & Zhang, X. (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning, 135, 1–10. https://doi.org/10.1016/j.landurbplan.2014.11.007
  14. Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. Wyman Street, Waltham, MA 02451, USA: Elsevier
  15. Harani, N. H., & Damayanti, F. S. (2021). Implementation of the C5.0 Algorithm to Determine Potential Customers at the Cimahi Post Office. Jurnal Sistem Informasi Dan Teknologi, 4(1), 69–76. Retrieved from http://www.jurnal.umk.ac.id/sitech
  16. Hidayati, I. N., Suharyadi, R., & Danoedoro, P. (2018). Combined Image Index for Analysis of Built-up Land and Urban Vegetation. Majalah Geografi Indonesia, 32(1), 24. https://doi.org/10.22146/mgi.31899
  17. Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression. United States of America: Jogn Wiley & Sons, Inc
  18. Irwansyah, E. (2013). Geographic Information Systems: Basic Principles and Application Development. Yogyakarta: Digibooks
  19. Marjuki, B. (2014). Geographic Information System Using Quantum GIS 2.0.1 Durfour. Kementerian Pekerjaan Umum dan Perumahan Rakyat
  20. Maxim, L. D., Niebo, R., & Utell, M. J. (2014, November 1). Screening tests: A review with examples. Inhalation Toxicology, Vol. 26, pp. 811–828. Informa Healthcare. https://doi.org/10.3109/08958378.2014.955932
  21. Muflikah, L., Widodo, Mahmudi, W. F., & Solimun. (2021). Machine Learning in Bioinformatics. Malang: Universitas Brawijaya
  22. Nugroho, A. S., Witarto, A. B., & Handoko, D. (2003). Application of Support Vector Machine in Bioinformatics. Indonesian Scientific Meeting. Gifu-Japan. Retrieved from http://asnugroho.net
  23. Oktaviani, N., & Kusuma, H. A. (2017). Introduction of Sentinel-2 Satellite Imagery for Marine Mapping. Oseana, XLII(3), 40–55
  24. Pemerintah Republik Indonesia. Law of the Republic of Indonesia Number 28 of 2002 concerning Buildings., (2002)
  25. Prahasta, E. (2002). Basic Concepts of Geographic Information Systems. Bandung: Informatika
  26. Pratiwi, R., Hayati, M. N., & Prangga, S. (2020). Comparison of C5.0 Algorithm Classification with Classification and Regression Tree (Case Study: Social Data of Family Head of Teluk Baru Village, Muara Ancalong District in 2019). BAREKNG: Jurnal Ilmu Matematika Dan Terapan, 14(2), 267–278. https://doi.org/10.30598/barekengvol14iss2pp267-278
  27. Ramdani, F. (2021). Geospatial Data Science: Geospatial Data Processing and Analysis using R. Malang: Pena Persada
  28. Rosadi, D. (2016). Statistical analysis with R (1st ed.). Yogyakarta: Gadjah Mada University Press
  29. Sa’adah, U., Rochayati, M. Y., Lestari, D. W., & Lusia, D. A. (2021). Complete Analysis of Data Mining Algorithms and Their Implementation Using R. Malang: UB Press
  30. Sampurno, R. M., & Thoriq, A. (2016). Land Cover Classification using Landsat 8 Operational Land Imager (OLI) Data in Sumedang Regency. Jurnal Teknotan, 10(2), 61–70
  31. Semedi, B., Rijal, S. S., Sambah, A. B., & Isdianto, A. (2021). Introduction to Marine Remote Sensing. Surabaya: Universitas Brawijaya
  32. Supuwiningsih, N. N., Januhari, N. N. U., Suniantara, I. K. P., & Hanief, S. (2022). Integration of Spatial Data and Non-Spatial Data of Geographic Information Systems. Bandung: Media Sains Indonesia
  33. Suyanto. (2017). Data Mining for Data Classification and Clustering. Bandung: Informatika
  34. Syahrani, I. M., Kusuma, W. A., & Wahyuni, S. (2019). Comparation Analysis of Ensemble Technique With Boosting(XGBOOST) and Bagging(Random Forest) for Classify Splice Junction DNA Sequence Category. Jurnal Penelitian Pos Dan Informatika, 9(1), 27
  35. Utari, D. T. (2019). Applied regression analysis with R. Yogyakarta: Universitas Islam Indonesia
  36. Werdiningsih, I., Nuqoba, B., & Muhammadun. (2020). Data Mining Using Android, Weka, and SPSS. Surabaya: Airlangga University Press
  37. Widayati, Y. T., Prihati, Y., & Widjaja, S. (2021). Analysis and Comparison of Naïve Bayes and C4.5 Algorithms for MNC Play Customer Loyalty Classification in Semarang City. TRANSFORMTIKA, 18(2), 161–172
  38. Zarodi, H., & Anshori, M. (2018). Geographic Information System Training Module using QGIS. Yogyakarta: SinauGIS
  39. Zhu, W., Zeng, N., & Wang, N. (2010). Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS Implementations. NESUG Proceedings: Health Care and Life Sciences. Baltimore, Maryland

Last update:

No citation recorded.

Last update: 2025-10-31 18:01:55

No citation recorded.