skip to main content

Deep Learning for Coastal Erosion Assessment: Case Study of Vietnam’s Coastal Regions

*HongGiang Nguyen  -  Hue University, Viet Nam
HuuBang Tran  -  Institute of Architecture, Construction and Transportation, ThuDauMot University, Thủ Dầu Một City 5500, Vietnam, Viet Nam

Citation Format:
Abstract

Vietnam’s coastal erosion has experienced a significant increase cause climate change and anthropogenic factors over the past decade. This study intends to analyze the trends of coastline erosion, identify the factors that drive it, and utilize deep learning algorithms to estimate the erosion risk in the future. The National Centre for Hydro-Meteorological Forecasting of Vietnam, Open Development Mekong, and Landsat 8 OLI/TIRS satellite pictures taken between the years 2016 and 2022 are the sources of data for the study, in the 52 erosion prone locations across Vietnam’s coastlines. The significant environmental factors for the model are the height of tides, waves, storm intensity, soil porosity, high monsoon rainfall, sea level rise, temperature, and coastal geomorphology. A Pearson correlation analysis indicates the strongest correlation between storm intensity, wave height, temperature alongside a strong negative correlation of tidal height with rainfall and coastal slope. Accuracy of the forecast was performed with five models: Recurrent Neural Network (RNN), Long Short-Term Memory Network (LSTM), Bidirectional Long Short-Term Memory Network (BiLSTM), Bidirectional RNN (BiRNN), and Hybrid RNN_LSTM. Among the tested models, the Hybrid RNN_LSTM outperformed others, achieving R² and a correlation coefficient to gain 0.77 and 0.91, respectively, at the same time, the study emphasized monsoon winds, storms intensity, and tidal height as the most impactful parameters. These findings can form the basis for data-driven policy and management strategies to improve coastal resilience. Further research should consider anthropogenic activities and land use changes to expand scope and improve model accuracy in areas experiencing global erosion.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
cover letter
Subject
Type Research Instrument
  Download (17KB)    Indexing metadata
Keywords: Coastal Erosion, Remote Sensing, Deep Learning, Influence Factors

Article Metrics:

  1. Al-Selwi, S. M., Hassan, M. F., Abdulkadir, S. J., Muneer, A., Sumiea, E. H., Alqushaibi, A., & Ragab, M. G. (2024). RNN-LSTM: From Applications to Modeling Techniques and Beyond—Systematic Review. Journal of King Saud University-Computer and Information Sciences, 36(5), 102068. https://doi.org/https:/doi.org/10.1016/j.jksuci.2024.102068">[Crossref]

  2. Anthony, E. J. (2016). Assessment of Peri-Urban Coastal Protection Options in Paramaribo-Wanica, Suriname. In WWF Guianas, Paramaribo, Suriname.

  3. Anthony, E. J., Gardel, A., Zainescu, F., & Brunier, G. (2021). Fine sediment systems. Reference Module in Earth Systems and Environmental Sciences, 1016, 130–139. https://doi.org/10.1016/B978-0-12-818234-5.00130-9">[Crossref]

  4. Asuero, A. G., Sayago, A., & González, A. G. (2006). The Correlation Coefficient: an Overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. https://doi.org/10.1080/10408340500526766">[Crossref]

  5. Barbier, E. B., Georgiou, I. Y., Enchelmeyer, B., & Reed, D. J. (2013). The Value of Wetlands in Protecting Southeast Louisiana from Hurricane Storm Surges. PLOS ONE, 8(3), e58715. https://doi.org/10.1371/journal.pone.0058715">[Crossref]

  6. Bird, E. C. F. (2008). Coastal Geomorphology: an Introduction. John Wiley & Sons.

  7. Brocx, M., & Semeniuk, V. (2009). Coastal Geoheritage: Encompassing Physical, Chemical, and Biological Processes, Landforms, and Other Geological Features in the Coastal Zone. Journal of the Royal Society of Western Australia, 92, 243–260.

  8. Brown, J. B. (2018). Classifiers and their Metrics Quantified. Molecular Informatics, 37(1–2), 1700127. https://doi.org/10.1002/minf.201700127">[Crossref]

  9. Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4), 585–602. https://doi.org/10.1007/s10712-011-9119-1">[Crossref]

  10. Collins, B. D., & Sitar, N. (2008). Processes of Coastal Bluff Erosion in Weakly Lithified Sands, Pacifica, California, USA. Geomorphology, 97(3–4), 483–501. https://doi.org/10.1016/j.geomorph.2007.09.004">[Crossref]

  11. Cowell, P. J., & Thom, B. G. (2006). Discussion of: . Management of Uncertainty in Predicting Climate-Change Impacts on Beaches. Journal of Coastal Research, 22(6), 1577–1579. https://doi.org/10.2112/06A-0015.1">[Crossref]

  12. Crozier, M. J. (2010). Deciphering the Effect of Climate Change on Landslide Activity: A Review. Geomorphology, 124(3–4), 260–267. https://doi.org/10.1016/j.geomorph.2010.04.009">[Crossref]

  13. Dong, W. S., Ismailluddin, A., Yun, L. S., Ariffin, E. H., Saengsupavanich, C., Maulud, K. N. A., Ramli, M. Z., Miskon, M. F., Jeofry, M. H., Mohamed, J., & others. (2024). The Impact of Climate Change on Coastal Erosion in Southeast Asia and the Compelling Need to Establish Robust Adaptation Strategies. Heliyon, 10(4). https://doi.org/10.1016/j.heliyon.2024.e25609">[Crossref]

  14. Donkol, A. A. E.-B., Hafez, A. G., Hussein, A. I., & Mabrook, M. M. (2023). Optimization of Intrusion Detection using Likely Point PSO and Enhanced LSTM-RNN Hybrid Technique in Communication Networks. IEEE Access, 11, 9469–9482. https://doi.org/10.1109/ACCESS.2023.3240109">[Crossref]

  15. Duc, D. M., & Hieu, N. M. (2017). Analysis of Sea-Level Rise Impacts on Sea Dike Stability in Hai Hau Coast, Vietnam. International Journal of Civil Engineering, 15(3), 377–389. https://doi.org/10.1007/s40999-017-0191-x">[Crossref]

  16. Duke, N. C., Meynecke, J.-O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K. C., Field, C. D., & others. (2007). A World without Mangroves? Science, 317(5834), 41–42. https://doi.org/10.1126/science.317.5834.41b">[Crossref]

  17. FitzGerald, D. M., Fenster, M. S., Argow, B. A., & Buynevich, I. V. (2008). Coastal Impacts ue to Sea-Level Rise. Annu. Rev. Earth Planet. Sci., 36(1), 601–647. https://doi.org/10.1146/annurev.earth.35.031306.140139">[Crossref]

  18. Gao, J. (2024). R-Squared (R2)--How much Variation is Explained? Research Methods in Medicine & Health Sciences, 5(4), 104–109. https://doi.org/10.1177/26320843231186398">[Crossref]

  19. Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and Distribution of Mangrove Forests of the World using Earth Observation Satellite Data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x">[Crossref]

  20. Gracia, A., Rangel-Buitrago, N., Oakley, J. A., & Williams, A. T. (2018). Use of Ecosystems in Coastal Erosion Management. Ocean & Coastal Management, 156, 277–289. https://doi.org/10.1016/j.ocecoaman.2017.07.009">[Crossref]

  21. Hameed, Z., & Garcia-Zapirain, B. (2020). Sentiment Classification using a Single-Layered BiLSTM Model. Ieee Access, 8, 73992–74001. https://doi.org/10.1109/ACCESS.2020.2988550">[Crossref]

  22. Hamilton, S. (2013). Assessing the Role of Commercial Aquaculture in Displacing Mangrove Forest. Bulletin of Marine Science, 89(2), 585–601. https://doi.org/10.5343/bms.2012.1069">[Crossref]

  23. Hansen, J., Sato, M., Russell, G., & Kharecha, P. (2013). Climate Sensitivity, Sea Level and Atmospheric Carbon Dioxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2001), 20120294. https://doi.org/10.1098/rsta.2012.0294">[Crossref]

  24. Hapke, C. J., Reid, D., & Richmond, B. (2009). Rates and Trends of Coastal Change in California and the Regional Behavior of the Beach and Cliff System. Journal of Coastal Research, 25(3), 603–615. https://doi.org/10.2112/08-1006.1">[Crossref]

  25. Hens, L., Thinh, N. A., Hanh, T. H., Cuong, N. S., Lan, T. D., Van Thanh, N., & Le, D. T. (2018). Sea-Level Rise and Resilience in Vietnam and the Asia-Pacific: A Synthesis. Vietnam Journal of Earth Sciences, 40(2), 126–152. https://doi.org/10.15625/0866-7187/40/2/11107">[Crossref]

  26. Karch, J. (2020). Improving on Adjusted R-Squared. Collabra: Psychology, 6(1), 45. https://doi.org/10.1525/collabra.343">[Crossref]

  27. Kardani, N., Zhou, A., Nazem, M., & Shen, S.-L. (2020). Estimation of Bearing Capacity of Piles in Cohesionless Soil using Optimised Machine Learning Approaches. Geotechnical and Geological Engineering, 38(2), 2271–2291. https://doi.org/10.1007/s10706-019-01085-8">[Crossref]

  28. Karlsrud, K., Vangelsten, B. V, & Frauenfelder, R. (2017). Subsidence and Shoreline Retreat in the Ca Mau Province--Vietnam: Causes, Consequences and Mitigation Options. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 48(1), 26–32. https://doi.org/10.14456/seagj.2017.37">[Crossref]

  29. Kim, S., & Kim, H. (2016). A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts. International Journal of Forecasting, 32(3), 669–679. https://doi.org/10.1016/j.ijforecast.2015.12.003">[Crossref]

  30. Komar, P. D. (1977). Beach Processes and Sedimentation.

  31. Lal, R., & Stewart, B. A. (2018). Soil and Climate. CRC Press, Taylor & Francis Group.

  32. Li, Q., Ness, P. M., Ragni, A., & Gales, M. J. F. (2019). Bi-Directional Lattice Recurrent Neural Networks for Confidence Estimation. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6755–6759. https://doi.org/10.1109/ICASSP.2019.8683488">[Crossref]

  33. Lin, T. Y., Van Onselen, V. M., & Vo, L. P. (2021). Coastal Erosion in Vietnam: Case studies and Implication for Integrated Coastal Zone Management in the Vietnamese South-Central Coastline. IOP Conference Series: Earth and Environmental Science, 652(1), 12009. https://doi.org/10.1088/1755-1315/652/1/012009">[Crossref]

  34. Lindemann, B., Müller, T., Vietz, H., Jazdi, N., & Weyrich, M. (2021). A Survey on Long Short-Term Memory Networks for Time Series Prediction. Procedia Cirp, 99, 650–655. https://doi.org/10.1016/j.procir.2021.03.088">[Crossref]

  35. Liu, D. Z., & Singh, G. (2016). A Recurrent Neural Network based Recommendation S ystem. International Conference on Recent Trends in Engineering, Science & Technology.

  36. Masselink, G., Hughes, M., & Knight, J. (2014). Introduction to Coastal Processes and Geomorphology. Routledge. https://doi.org/10.4324/9780203785461">[Crossref]

  37. Ming, Y., Cao, S., Zhang, R., Li, Z., Chen, Y., Song, Y., & Qu, H. (2017). Understanding Hidden Memories of Recurrent Neural Networks. 2017 IEEE Conference on Visual Analytics Science and Technology (VAST), 13–24. https://doi.org/10.1109/VAST.2017.8585721">[Crossref]

  38. Morton, R. A. (2003). An Overview of Coastal Land Loss: with Emphasis on the Southeastern United States. US Geological Survey, Center for Coastal and Watershed Studies St~….

  39. Nearing, M. A., Foster, G. R., Lane, L. J., & Finkner, S. C. (1989). A Process-based Soil Erosion Model for USDA-Water Erosion Prediction Project Technology. Transactions of the ASAE, 32(5), 1587–1593. https://doi.org/10.13031/2013.31195">[Crossref]

  40. Nga, T. N. Q., Bay, N. T., Long, T. T., & Hoai, H. C. (2025). Drivers and Mechanisms of Erosion in the Vietnamese Mekong Delta. In The Mekong Delta Environmental Research Guidebook (pp. 107–130). Elsevier. https://doi.org/10.1016/B978-0-443-23673-0.00005-2">[Crossref]

  41. Nguyen, A. T., Vu, A. D., Dang, G. T. H., Hoang, A. H., & Hens, L. (2018). How do Local Communities Adapt to Climate Changes along Heavily Damaged coasts? A Stakeholder Delphi Study in Ky Anh (Central Vietnam). Environment, Development and Sustainability, 20(2), 749–767. https://doi.org/10.1007/s10668-017-9908-x">[Crossref]

  42. Nicholls, R. J., & Cazenave, A. (2010). Sea-Level Rise and Its Impact on Coastal Zones. Science, 328(5985), 1517–1520. https://doi.org/10.1126/science.1185782">[Crossref]

  43. Nichols, C. R., Zinnert, J., & Young, D. R. (2018). Degradation of Coastal Ecosystems: Causes, Impacts and Mitigation Efforts. In Tomorrow’s Coasts: Complex and Impermanent (pp. 119–136). Springer. https://doi.org/10.1007/978-3-319-75453-6_8">[Crossref]

  44. Niedbała, G. (2019). Simple Model based on Artificial Neural Network for Early Prediction and Simulation Winter Rapeseed Yield. Journal of Integrative Agriculture, 18(1), 54–61. https://doi.org/10.1016/S2095-3119(18)62110-0">[Crossref]

  45. Owens, P. N. (2020). Soil Erosion and Sediment Dynamics in the Anthropocene: A Review of Human Impacts during a Period of Rapid Global Environmental Change. Journal of Soils and Sediments, 20(12), 4115–4143. https://doi.org/10.1007/s11368-020-02815-9">[Crossref]

  46. Primavera, J. H. (2006). Overcoming the Impacts of Aquaculture on the Coastal Zone. Ocean & Coastal Management, 49(9–10), 531–545. https://doi.org/10.1016/j.ocecoaman.2006.06.018">[Crossref]

  47. Pugh, D. (2004). Changing Sea Levels: Effects of Tides, Weather and Climate. Cambridge University Press.

  48. Rahmstorf, S. (2007). A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science, 315(5810), 368–370. https://doi.org/10.1126/science.1135456">[Crossref]

  49. Sahavacharin, A., Sompongchaiyakul, P., & Thaitakoo, D. (2022). The Effects of Land-based Change on Coastal Ecosystems. Landscape and Ecological Engineering, 18(3), 351–366.

  50. Salih, A. A., & Abdulazeez, A. M. (2021). Evaluation of Classification Algorithms for Intrusion Detection System: A Review. Journal of Soft Computing and Data Mining, 2(1), 31–40. https://doi.org/10.30880/jscdm.2021.02.01.004">[Crossref]

  51. Sallenger Jr, A. H. (2000). Storm Impact Scale for Barrier Islands. Journal of Coastal Research, 16(3), 890–895. https://doi.org/https:/www.jstor.org/stable/4300099">[Crossref]

  52. Shukla, M. K. (2003). Soil Physics: An Introduction. CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9780429264849">[Crossref]

  53. Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The Performance of LSTM and BiLSTM in Forecasting Time Series. 2019 IEEE International Conference on Big Data (Big Data), 3285–3292. https://doi.org/10.1109/BigData47090.2019.9005997">[Crossref]

  54. Sidle, R. C., & Bogaard, T. A. (2016). Dynamic Earth System and Ecological Controls of Rainfall-Initiated Landslides. Earth-Science Reviews, 159, 275–291. https://doi.org/10.1016/j.earscirev.2016.05.013">[Crossref]

  55. Šverko, Z., Vrankić, M., Vlahinić, S., & Rogelj, P. (2022). Complex Pearson correlation Coefficient for EEG Connectivity Analysis. Sensors, 22(4), 1477. https://doi.org/10.3390/s22041477">[Crossref]

  56. Thepsiriamnuay, H., & Pumijumnong, N. (2019). Modelling Assessment of Sandy Beaches Erosion in Thailand. Environment and Natural Resources Journal, 17(2), 71–86. https://doi.org/10.32526/ennrj.17.2.2019.14">[Crossref]

  57. Touzani, S., Granderson, J., & Fernandes, S. (2018). Gradient Boosting Machine for Modeling the Energy Consumption of Commercial Buildings. Energy and Buildings, 158, 1533–1543. https://doi.org/10.1016/j.enbuild.2017.11.039">[Crossref]

  58. Toy, T. J., Foster, G. R., & Renard, K. G. (2002). Soil Erosion: Processes, Prediction, Measurement, and Control. John Wiley & Sons, Inc.

  59. Van Tho, N. (2019). Coastal Erosion, River Bank Erosion and Landslides in the Mekong Delta: Causes, effects and Solutions. Geotechnics for Sustainable Infrastructure Development, 957–962. https://doi.org/10.1007/978-981-15-2184-3_125">[Crossref]

  60. Veettil, B. K., Ward, R. D., Dung, N. T. K., Van, D. D., Quang, N. X., Hoai, P. N., & Hoang, N.-D. (2021). The Use of Bioshields for Coastal Protection in Vietnam: Current Status and Potential. Regional Studies in Marine Science, 47, 101945. https://doi.org/10.1016/j.rsma.2021.101945">[Crossref]

  61.  Weerakody, P. B., Wong, K. W., Wang, G., & Ela, W. (2021). A Review of Irregular Time Series Data Handling with Gated Recurrent Neural Networks. Neurocomputing, 441, 161–178. https://doi.org/10.1016/j.neucom.2021.02.046">[Crossref]

  62. Xiang, Z., Yan, J., & Demir, I. (2020). A Rainfall‐Runoff Model With LSTM‐Based Sequence‐to‐Sequence Learning. Water Resources Research, 56(1), e2019WR025326. https://doi.org/10.1029/2019WR025326">[Crossref]

  63. Yaacob, R., Shaari, H., Sapon, N., Ahmad, M. F., Arifin, E. H., Zakariya, R., & Hussain, M. L. (2018). Annual Changes of Beach Profile and Nearshore Sediment Distribution Off Dungun-Kemaman, Terengganu, Malaysia. Jurnal Teknologi (Sciences & Engineering), 80(5). https://doi.org/10.11113/jt.v80.11196">[Crossref]

  64. Yasuhara, K., Tamura, M., Van, T. C., & Duc, D. M. (2016). Geotechnical Adaptation to the Vietnamese Coastal and Riverine Erosion in the Context of Climate Change. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 47(1), 7–14. https://doi.org/10.14456/seagj.2016.53">[Crossref]

  65. Zhang, K., Douglas, B. C., & Leatherman, S. P. (2004). Global Warming and Coastal Erosion. Climatic Change, 64(1), 41–58. https://doi.org/10.1023/B:CLIM.0000024690.32682.48">[Crossref]

  66.  


Last update:

No citation recorded.

Last update: 2025-12-13 01:15:22

No citation recorded.