skip to main content

Deep Learning for Coastal Erosion Assessment: Case Study of Vietnam’s Coastal Regions

*HongGiang Nguyen  -  Hue University, Viet Nam
HuuBang Tran  -  Institute of Architecture, Construction and Transportation, ThuDauMot University, ThudauMot city 5500,, Viet Nam

Citation Format:
Abstract

Vietnam’s coastal erosion has experienced a significant increase cause climate change and anthropogenic factors over the past decade. However, a holistic study combining these factors remains limited. This study intends to analyze the trends of coastline erosion, identify the factors that drive it, and utilize deep learning algorithms to estimate the erosion risk in the future. The National Centre for Hydro-Meteorological Forecasting of Vietnam, Open Development Mekong, and Landsat 8 OLI/TIRS satellite pictures taken between the years 2016 and 2022 are the sources of data for the study over the 52 erosion prone locations across Vietnam’s coastlines. The significant environmental factors for the model are the height of tides, waves, storm intensity, soil porosity, high monsoon rainfall, sea level rise, temperature, and coastal geomorphology. A Pearson correlation analysis indicates the strongest correlation between storm intensity, wave height, temperature alongside a strong negative correlation of tidal height with rainfall and coastal slope. Accuracy of the forecast was performed with five models: Recurrent Neural Network (RNN), Long Short-Term Memory Network (LSTM), Bidirectional Long Short-Term Memory Network (BiLSTM), Bidirectional RNN (BiRNN), and Hybrid RNN_LSTM. Among the tested models, the Hybrid RNN_LSTM outperformed others, achieving R_squared (R²) and a correlation coefficient (CC) to gain 0.77 and  0.91, respectively, at the same time, the study emphasized monsoon winds, storms intensity, and tidal height as the most impactful parameters. These findings can announce data-driven policy and management strategies for coastal resilience. Further research should consider the effect of anthropogenic activities and modifications of land use in order to increase the scope and precision of these models concerning the eroding areas of the globe.

Note: This article has supplementary file(s).

Fulltext |  Research Instrument
cover letter
Subject
Type Research Instrument
  Download (17KB)    Indexing metadata
Keywords: Coastal erosion, deep learning, influence factors

Article Metrics:

  1. Al-Selwi, S. M., Hassan, M. F., Abdulkadir, S. J., Muneer, A., Sumiea, E. H., Alqushaibi, A., & Ragab, M. G. (2024). RNN-LSTM: From applications to modeling techniques and beyond. Systematic review. Journal of King Saud University-Computer and Information Sciences, 36, 102068. DOI: 10.1016/j.jksuci.2024.102068
  2. Anthony, E. J. (2016). Assessment of peri-urban coastal protection options in Paramaribo-Wanica, Suriname. WWF Guianas, Paramaribo, Suriname. WWF Guianas, Paramaribo, Suriname
  3. Anthony, E. J., Gardel, A., Zainescu, F., & Brunier, G. (2021). Fine sediment systems. Reference Module in Earth Systems and Environmental Sciences, Elsevier. DOI: 10.1016/B978-0-12-409548-9.00130-9
  4. Asuero, A. G., Sayago, A., & González, A. G. (2006). The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41-59. DOI: 10.1080/10408340500526766
  5. Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169-193. DOI: 10.1890/10-1510.1
  6. Bird, E. C. F. (2008). Coastal Geomorphology: An Introduction (2nd ed.). John Wiley & Sons, Chichester, UK. John Wiley & Sons, Chichester, United Kingdom
  7. Brocx, M., & Semeniuk, V. (2009). Coastal geoheritage: encompassing physical, chemical, and biological processes, landforms, and other geological features in the coastal zone. Journal of the Royal Society of Western Australia, 92, 243-251. DOI: Notavailable
  8. Brown, J. (2018). Classifiers and their metrics quantified. Molecular Informatics, 37(1-2), 1700127. DOI: 10.1002/minf.201700127
  9. Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32, 585-602. DOI: 10.1007/s10712-011-9119-1
  10. Collins, B. D., & Sitar, N. (2008). Processes of coastal bluff erosion in weakly lithified sands, Pacifica, California, USA. Geomorphology, 97(3-4), 483-501. DOI: 10.1016/j.geomorph.2007.09.004
  11. Cowell, P. J., & Thom, B. G. (2006). Reply to: Pilkey, O. H., & Cooper, A. G., 2006. Discussion of: Management of Uncertainty in Predicting Climate-Change Impacts on Beaches, Journal of Coastal Research, 22(6), 1577-1579. Journal of Coastal Research, 22(6), 1580-1584. DOI: 10.2112/04-0401.1
  12. Crozier, M. J. (2010). Deciphering the effect of climate change on landslide activity: A review. Geomorphology, 124(3-4), 260-267. DOI: 10.1016/j.geomorph.2010.04.009
  13. Dong, W. S., Ismailluddin, A., Yun, L. S., Ariffin, E. H., Saengsupavanich, C., Maulud, K. N. A., Ramli, M. Z., Miskon, M. F., Jeofry, M. H., & Mohamed, J. (2024). The impact of climate change on coastal erosion in Southeast Asia and the compelling need to establish robust adaptation strategies. Heliyon. DOI: 10.1016/j.heliyon.2024.e123
  14. Donkol, A. A. E.-B., Hafez, A. G., Hussein, A. I., & Mabrook, M. M. (2023). Optimization of intrusion detection using likely point PSO and enhanced LSTM-RNN hybrid technique in communication networks. IEEE Access, 11, 9469-9482. DOI: 10.1109/ACCESS.2023.3243490
  15. Duc, D. M., & Hieu, N. M. (2017). Analysis of sea-level rise impacts on sea dike stability in Hai Hau Coast, Vietnam. International Journal of Civil Engineering, 15, 377-389. DOI: 10.1007/s40999-016-0080-3
  16. Duke, N. C., Meynecke, J.-O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K. C., & Field, C. D. (2007). A world without mangroves? Science, 317(5834), 41-42. DOI: 10.1126/science.317.5834.41b
  17. FitzGerald, D. M., Fenster, M. S., Argow, B. A., & Buynevich, I. V. (2008). Coastal impacts due to sea-level rise. Annual Review of Earth and Planetary Sciences, 36(1), 601-647. DOI: 10.1146/annurev.earth.35.031306.140139
  18. Ga, M. (2007). Global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 747-845. DOI: 10.1017/CBO9780511546013.012
  19. Gao, J. (2024). R-Squared (R2)-How much variation is explained? Research Methods in Medicine & Health Sciences, 5(4), 104-109. DOI: 10.1177/26320843211036189
  20. Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154-159. DOI: 10.1111/j.1466-8238.2010.00584.x
  21. Gracia, A. d., Rangel-Buitrago, N., Oakley, J. A., & Williams, A. (2018). Use of ecosystems in coastal erosion management. Ocean & Coastal Management, 156, 277-289. DOI: 10.1016/j.ocecoaman.2017.07.009
  22. Hameed Zabit, G. Z. B. (2020). Sentiment classification using a single-layered BiLSTM model. IEEE Access, 8, 73992-74001. DOI: 10.1109/ACCESS.2020.2988326
  23. Hamilton, S. (2013). Assessing the role of commercial aquaculture in displacing mangrove forest. Bulletin of Marine Science, 89(2), 585-601. DOI: 10.5343/bms.2012.1063
  24. Hansen, J., Sato, M., Russell, G., & Kharecha, P. (2013). Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2001), 20120294. DOI: 10.1098/rsta.2012.0294
  25. Hapke, C. J., Reid, D., & Richmond, B. (2009). Rates and trends of coastal change in California and the regional behavior of the beach and cliff system. Journal of Coastal Research, 25(3), 603-615. DOI: 10.2112/08-1006.1
  26. Harley, M. D., Turner, I. L., Kinsela, M. A., Middleton, J. H., Mumford, P. J., Splinter, K. D., Phillips, M. S., Simmons, J. A., Hanslow, D. J., & Short, A. D. (2017). Extreme coastal erosion enhanced by anomalous extratropical storm wave direction. Scientific Reports, 7(1), 6033. DOI: 10.1038/s41598-017-05792-1
  27. Hens, L., Thinh, N. A., Hanh, T. H., Cuong, N. S., Lan, T. D., Van Thanh, N., & Le, D. T. (2018). Sea-level rise and resilience in Vietnam and the Asia-Pacific: A synthesis. Vietnam Journal of Earth Sciences, 40(2), 126-152. DOI: 10.15625/0866-7187/40/2/12606
  28. Hughes, M., & Masselink, G. (2003). Introduction to Coastal Processes and Geomorphology. Hodder Education Publishers, London, United Kingdom
  29. Karch, J. (2020). Improving on adjusted R-squared. Collabra: Psychology, 6(1). DOI: 10.1525/collabra.276
  30. Kardani, N., Zhou, A., Nazem, M., & Shen, S.-L. (2020). Estimation of bearing capacity of piles in cohesionless soil using optimised machine learning approaches. Geotechnical and Geological Engineering, 38(2), 2271-2291. DOI: 10.1007/s10706-019-01116-0
  31. Karlsrud, K., Vangelsten, B., & Frauenfelder, R. (2017). Subsidence and shoreline retreat in the Ca Mau Province-Vietnam. Causes, consequences and mitigation options. Geotechnical Journal of the SEAGS & AGSSEA, 48(1), 26-32
  32. Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669-679. DOI: 10.1016/j.ijforecast.2015.12.003
  33. Komar, P. (1998). Beach processes and sedimentation. Prentice-Hall. New Jersey. DOI: Notavailable
  34. Komar, P. D. (1977). Beach processes and sedimentation. Prentice-Hall, Englewood Cliffs, NJ
  35. Lal, R., & Stewart, B. A. (2018). Soil and climate. CRC Press. Boca Raton, Florida
  36. Li, Q., Ness, P., Ragni, A., & Gales, M. J. (2019). Bi-directional lattice recurrent neural networks for confidence estimation. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6750-6754). DOI: 10.1109/ICASSP.2019.8683730
  37. Lin, T., Van Onselen, V., & Vo, L. (2021). Coastal erosion in Vietnam: Case studies and implication for integrated coastal zone management in the Vietnamese south-central coastline. In IOP Conference Series: Earth and Environmental Science (Vol. 664, No. 1, p. 012001). IOP Publishing. DOI: 10.1088/1755-1315/664/1/012001
  38. Lindemann, B., Müller, T., Vietz, H., Jazdi, N., & Weyrich, M. (2021). A survey on long short-term memory networks for time series prediction. Procedia CIRP, 99, 650-655. DOI: 10.1016/j.procir.2021.03.088
  39. Liu, D. Z., & Singh, G. (2016). A recurrent neural network based recommendation system. In International Conference on Recent Trends in Engineering, Science & Technology. Stanford University's CS224d course, UK
  40. Ming, Y., Cao, S., Zhang, R., Li, Z., Chen, Y., Song, Y., & Qu, H. (2017). Understanding hidden memories of recurrent neural networks. In 2017 IEEE Conference on Visual Analytics Science and Technology (VAST) (pp. 13-24). DOI: 10.1109/VAST.2017.8585489
  41. Morton, R. A. (2003). An overview of coastal land loss: With emphasis on the Southeastern United States. Citeseer, Princeton, NJ
  42. Nearing, M. A., Foster, G. R., Lane, L., & Finkner, S. (1989). A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of the ASAE, 32(5), 1587-1593. DOI: 10.13031/2013.31195
  43. Nga, T. N. Q., Bay, N. T., Long, T. T., & Hoai, H. C. (2025). Drivers and mechanisms of erosion in the Vietnamese Mekong Delta. In T. T. Long, N. T. Bay, & H. C. Hoai (Eds.), The Mekong Delta Environmental Research Guidebook (pp. 107-130). Elsevier, Amsterdam, Netherlands
  44. Nguyen, A. T., Vu, A. D., Dang, G. T., Hoang, A. H., & Hens, L. (2018). How do local communities adapt to climate changes along heavily damaged coasts? A stakeholder Delphi study in Ky Anh (Central Vietnam). Environment, Development and Sustainability, 20, 749-767. DOI: 10.1007/s10668-017-9909-y
  45. Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328(5985), 1517-1520. DOI: 10.1126/science.1185782
  46. Nichols, C. R., Zinnert, J., & Young, D. R. (2019). Degradation of coastal ecosystems: Causes, impacts, and mitigation efforts. Tomorrow's Coasts: Complex and Impermanent, 119-136
  47. Niedbala, G. (2019). Simple model based on artificial neural network for early prediction and simulation of winter rapeseed yield. Journal of Integrative Agriculture, 18(1), 54-61. DOI: 10.1016/S2095-3119(18)61948-1
  48. Owens, P. N. (2020). Soil erosion and sediment dynamics in the Anthropocene: A review of human impacts during a period of rapid global environmental change. Journal of Soils and Sediments, 20, 4115-4143. DOI: 10.1007/s11368-020-02815-9
  49. Primavera, J. H. (2006). Overcoming the impacts of aquaculture on the coastal zone. Ocean & Coastal Management, 49(9-10), 531-545. DOI: 10.1016/j.ocecoaman.2006.06.018
  50. Pugh, D. T. (2004). Changing sea levels: Effects of tides, weather and climate (Vol. 272). Cambridge University Press, Cambridge, UK
  51. Rahmstorf, S. (2007). A semi-empirical approach to projecting future sea-level rise. Science, 315(5810), 368-370. DOI: 10.1126/science.1135456
  52. Ranasinghe, R. (2016). Assessing climate change impacts on open sandy coasts: A review. Earth-Science Reviews, 160, 320-332. DOI: 10.1016/j.earscirev.2016.07.011
  53. Sahavacharin, A., Sompongchaiyakul, P., & Thaitakoo, D. (2022). The effects of land-based change on coastal ecosystems. Landscape and Ecological Engineering, 18(3), 351-366. DOI: 10.1007/s11355-022-00495-9
  54. Salih, A. A., & Abdulazeez, A. M. (2021). Evaluation of classification algorithms for intrusion detection system: A review. Journal of Soft Computing and Data Mining, 2(1), 31-40. DOI: 10.30880/jscdm.2021.02.01.004
  55. Sallenger Jr, A. H. (2000). Storm impact scale for barrier islands. Journal of Coastal Research, 890-895. DOI: 10.2307/4300099
  56. Shukla, M. K. (2023). Soil Physics: An Introduction. CRC Press, Boca Raton, Florida, USA
  57. Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The performance of LSTM and BiLSTM in forecasting time series. 2019 IEEE International Conference on Big Data (Big Data), 3285-3292. DOI: 10.1109/BigData47090.2019.9005997
  58. Sidle, R. C., & Bogaard, T. A. (2016). Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Science Reviews, 159, 275-291. DOI: 10.1016/j.earscirev.2016.05.013
  59. Šverko, Z., Vrankić, M., Vlahinić, S., & Rogelj, P. (2022). Complex Pearson correlation coefficient for EEG connectivity analysis. Sensors, 22(4), 1477. DOI: 10.3390/s22041477
  60. Thepsiriamnuay, H., & Pumijumnong, N. (2019). Modelling assessment of sandy beaches erosion in Thailand. Environment and Natural Resources Journal, 17(2), 71-86. DOI: 10.32526/ennrj.17.2.2019.14
  61. Touzani, S., Granderson, J., & Fernandes, S. (2018). Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy and Buildings, 158, 1533-1543. DOI: 10.1016/j.enbuild.2017.11.039
  62. Toy, T. (2002). Soil erosion: Processes, prediction, measurement, and control. John Wiley & Sons, Inc, New York, NY
  63. Van Tho, N. (2020). Coastal erosion, river bank erosion and landslides in the Mekong Delta: Causes, effects and solutions. Geotechnics for Sustainable Infrastructure Development. DOI: 10.1007/978-981-15-2184-3_1
  64. Veettil, B. K., Ward, R. D., Dung, N. T. K., Van, D. D., Quang, N. X., Hoai, P. N., & Hoang, N.-D. (2021). The use of bioshields for coastal protection in Vietnam: Current status and potential. Regional Studies in Marine Science, 47, 101945. DOI: 10.1016/j.rsma.2021.101945
  65. Weerakody, P. B., Wong, K. W., Wang, G., & Ela, W. (2021). A review of irregular time series data handling with gated recurrent neural networks. Neurocomputing, 441, 161-178. DOI: 10.1016/j.neucom.2021.02.010
  66. Xiang, Z., Yan, J., & Demir, I. (2020). A rainfall?runoff model with LSTM?based sequence?to?sequence learning. Water Resources Research, 56(1), e2019WR025326. DOI: 10.1029/2019WR025326
  67. Yaacob, R., Shaari, H., Sapon, N., Ahmad, M. F., Arifin, E. H., Zakariya, R., & Hussain, M. L. (2018). Annual changes of beach profile and nearshore sediment distribution off Dungun-Kemaman, Terengganu, Malaysia. Jurnal Teknologi, 80(5). DOI: 10.11113/jt.v80.11161
  68. Yasuhara, K., Tamura, M., Van, T. C., & Duc, D. M. (2016). Geotechnical adaptation to the Vietnamese coastal and riverine erosion in the context of climate change. Geotechnical Engineering, 47(1), 7-14. DOI: Notavailable
  69. Zhang, K., Douglas, B. C., & Leatherman, S. P. (2004). Global warming and coastal erosion. Climatic Change, 64, 41-58. DOI: 10.1023/B:CLIM.0000024690.32682.48

Last update:

No citation recorded.

Last update: 2025-10-31 17:32:02

No citation recorded.