Simulation of Traffic Flow Model with Traffic Controller Boundary
DOI: https://doi.org/10.12777/ijse.5.1.25-30
Abstract
Doi: 10.12777/ijse.5.1.25-30
[How to cite this article: Sultana, N., Parvin, M. , Sarker, R., Andallah, L.S. (2013). Simulation of Traffic Flow Model with Traffic Controller Boundary. International Journal of Science and Engineering, 5(1),25-30. Doi: 10.12777/ijse.5.1.25-30]
Keywords
Full Text:
PDFReferences
Andallah, L. S. , Hossain , M. M. and Gani, M. O.(2011). A finite difference scheme for a fluid dynamic traffic flow model appended with two-point boundary condition. J. Bangladesh Math. Soc. (ISSN 1606-3694) 31 (2011) 43-52 DOI: http://dx.doi.org/10.3329/ganit.v31i0.10307
Kabir, M.H., Gani,M.O.and Andallah,,L.S. (2010). Numerical Simulation of a Mathematical Traffic Flow Model Based on a Nonlinear Velocity-Density Function. Journal of Bangladesh academy of sciences, vol.34.No.1, pp.15-22. ISSN 0378-8121
DOI: 10.3329/jbas.v34i1.5488
Klar,A., Kuhne,R.D.and Wegener,R.(1966). Mathematical Models for Vehicular Traffic, Technical University of Kaiserlautern, Germany. Surveys on Mathematics for Industry.
doi.org/10.1006/jmaa.1999.6493,
Leveque, R.J. (1992).Numerical Methods for Conservation Laws,1st edition. Computational Methods for Astrophysical Fluid Flow, Springer (1998).
http://www.amazon.com/Numerical-Methods-Conservation-Randall-LeVeque/dp/3764327235
ISBN 0-521-00924-3;
Trangestain, A. John (2000). Numerical Solution of Partial Differential Equations, February22, February 22, 2000, Durham.
Stephen ... Mech. 5, 633-634 (2005)/
DOI 10.002/pamm.200510293, 2005 WILEYVCH Verlag GmbH & Co. KGaA ...
K. W. MORTON AND D. F. MAYERS, Numerical Solutions of Partial Differential Equations: An Introduction, Cambridge University Press, second ed., 2005. doi: 10.1029/2002JB002329.
Daganzo C.F.(1995).A finite difference approximation of the kinematic wave model of traffic flow, Transportation Research Part B: Methodological, Elsevier, Volume 29, Number 4, August 1995 , pp. 261-276(16). DOI: http://dx.doi.org/10.1016/0191-2615(95)00004-W
Zhang, H. M. (2001).A finite difference approximation of a non-equilibrium traffic flow model, Transportation Research Part B: Methodological • Volume 35, Issue 4, May ,2001 (Elsevier),Pp.337-365. http://dx.doi.org/10.1016/S0191-2615(99)00054-5
Bretti, G., Natalini, R.and Piccoli,B. (2007).A Fluid- Dynamic Traffic Model on Road Networks(Springer), Arch Comput Methods Eng.,CIMNE, Barcelona,Spain.Vol- 14: 139–172
http://link.springer.com/content/pdf/10.1007/s11831-007-9004-8.pdf . DOI 10.1007/s 11831-007-9004-8
Richard Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow, Prentice-Hall, Englewood Cliffs, NJ, 1977. ISBN: 0135617383 / 9780135617380