skip to main content

Tren Penelitian Pengelolaan Sumber Daya Air Berkelanjutan Melalui Analisis Bibliometrik

1"Magister Studi Lingkungan,Universitas Sultan Ageng Tirtayasa,Jalan Raya Palka No.Km.3, Sindangsari, Kec. Pabuaran, Kota Serang, Banten 42163"., Indonesia

2Studi Lingkungan Universitas Sultan Ageng Tirtayasa, Banten, Indonesia, Indonesia

Received: 5 Aug 2024; Revised: 4 Mar 2025; Accepted: 26 Apr 2025; Available online: 25 May 2025; Published: 31 May 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract
Sumber daya air merupakan sumber daya alam yang terbatas dan penting bagi kehidupan manusia, ekosistem, dan keberlangsungan aktivitas ekonomi. Dengan populasi dunia yang terus bertambah dan dampak perubahan iklim, pengelolaan sumber daya air yang bijaksana diperlukan untuk memastikan ketersediaan air yang cukup untuk semua kebutuhan. Dengan memahami dan mengelola sumber daya air secara efisien dan berkelanjutan melalui penelitian yang terus menerus, diharapkan dapat menjaga ketersediaan air yang cukup bagi keberlangsungan kehidupan dan ekosistem di masa depan. Analisis bibliometrik dapat dilakukan untuk memahami perkembangan penelitian dalam bidang pengelolaan sumber daya air yang berkelanjutan. Dengan menggunakan pendekatan bibliometrik, peneliti dapat mengidentifikasi tren penelitian, kontributor utama, topik utama yang dibahas, serta perkembangan terkini dalam domain ini. Berdasarkan hasil analisis bibliometrik, terdapat peluang besar untuk pengembangan penelitian lebih lanjut dalam area “support vector regression” dan “sektor pertanian” terkait pengelolaan sumber daya air berkelanjutan. Dengan mengisi kesenjangan penelitian dalam area ini, dapat memperkaya pemahaman tentang kompleksitas pengelolaan sumber daya air dan menciptakan solusi inovatif untuk menjaga keberlanjutan sumber daya air di masa depan.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Tren Penelitian Pengelolaan Sumber Daya Air Berkelanjutan Melalui Analisis Bibliometrik
Subject Bibliometrik, Dimension, Sumber Daya Air, VOSviewer
Type Research Instrument
  View (1MB)    Indexing metadata
Keywords: Bibliometrik; Dimension; Sumber Daya Air; VOSviewer

Article Metrics:

  1. Amelia. (2021). Comparing between Scopus, Web of Science and Dimensions Indexation: Case of 100 Most Cited Articles on Waqf. Journal of Islamic Economic Literatures, 2(2). https://doi.org/10.58968/jiel.v2i2.44
  2. Angellina, Herwindiati, D. E., & Hendryli, J. (2023). Performa Support Vector Machine Pada Klasifikasi Lahan dan Air Tanah. Jurnal Media Informatika Budidarma, 7(1), 231–241. https://doi.org/10.30865/mib.v7i1.5279
  3. Cacal, J. C., Taboada, E. B., & Mehboob, M. S. (2023). Strategic Implementation of Integrated Water Resource Management in Selected Areas of Palawan: SWOT-AHP Method. Sustainability (Switzerland), 15(4). https://doi.org/10.3390/su15042922
  4. Chen, X., Zhao, X., Zhao, Y., Wang, R., Lu, J., Zhuang, H., & Bai, L. (2023). Interaction of Climate Change and Anthropogenic Activity on the Spatiotemporal Changes of Surface Water Area in Horqin Sandy Land, China. Remote Sensing, 15(7). https://doi.org/10.3390/rs15071918
  5. Chouhan, S. (2023). View of Climate Resilient Water Management for Sustainable Agriculture.pdf
  6. Fakhriyah, Yeyendra, & Marianti, A. (2021). Indonesian Journal of Conservation i j Integrasi Smart Water Management Berbasis Kearifan Lokal Sebagai Upaya Konservasi Sumber Daya Air di Indonesia. Indonesian Journal of Conservation, 10(1), 67–41. https://doi.org/10.15294/ijc.v10i1.31036
  7. Farida, F., Dasrizal, D., & Febriani, T. (2019). Review: Produktivitas Air Dalam Pengelolaan Sumber Daya Air Pertanian Di Indonesia. Jurnal Spasial, 5(3), 65–72. https://doi.org/10.22202/js.v5i3.3161
  8. Groh, J., Vanderborght, J., Pütz, T., Gründling, R., Rupp, H., Rahmati, M., Sommer, M., Sommer, M., Vereecken, H., & Gerke, H. H. (2020). Responses of soil water storage and crop water use efficiency to changing climatic conditions: A lysimeter-based space-for-time approach. Hydrology and Earth System Sciences, 24(3), 1211–1225. https://doi.org/10.5194/hess-24-1211-2020
  9. Guan, X. M. (2020). Water Treatment Analysis Based on Support Vector Machine Regression Algorithm. Journal of Physics: Conference Series, 1533(2). https://doi.org/10.1088/1742-6596/1533/2/022054
  10. H. Amorocho-Daza. (2023). 16. Access to Water‐Related Services Strongly Modulates Human Development.pdf (pp. 1–19). https://doi.org/https://doi.org/10.1029/2022EF003364
  11. H. Harianja, A. (2020). Model Pengelolaan Air Bersih di Kecamatan Pamulang, Kota Tangerang Selatan. Jurnal Ecolab, 14(2), 111–124. https://doi.org/10.20886/jklh.2020.14.2.111-124
  12. H., S. K., & Veeramanju, K. T. (2024). Predictive Models for Optimal Irrigation Scheduling and Water Management: A Review of AI and ML Approaches. International Journal of Management, Technology, and Social Sciences, 9(2), 94–110. https://doi.org/10.47992/ijmts.2581.6012.0346
  13. Halik, G., Wahyuni, S., Yunarni, W., & Bukhori, S. (2023). Model Prediksi Ketersediaan Air Menggunakan Data Sirkulasi Atmosfer. Jurnal Teknik Sumber Daya Air, 3(2), 107–116. https://doi.org/10.56860/jtsda.v3i2.49
  14. Hatmoko, W. (2020). Ketersediaan Air Permukaan pada Wilayah Sungai do Indonesia. Jurnal Ilmu Pendidikan, 7(2), 809–820
  15. Hidayati, D. (2017). Memudarnya Nilai Kearifan Lokal Masyarakat Dalam Pengelolaan Sumber Daya Air. In Jurnal Kependudukan Indonesia (Vol. 11, Issue 1, p. 39). https://doi.org/10.14203/jki.v11i1.36
  16. Jiang, M., Wu, Z., Guo, X., Wang, H., & Zhou, Y. (2023). Study on the Contribution of Land Use and Climate Change to Available Water Resources in Basins Based on Vector Autoregression (VAR) Model. Water (Switzerland), 15(11). https://doi.org/10.3390/w15112130
  17. Kalteh, A. M. (2015). Wavelet Genetic Algorithm-Support Vector Regression (Wavelet GA-SVR) for Monthly Flow Forecasting. Water Resources Management, 29(4), 1283–1293. https://doi.org/10.1007/s11269-014-0873-y
  18. Kasim, H., & Anindyajati, T. (2023). Perspektif Konstitusional Kedudukan Negara dan Swasta dalam Pengelolaan Sumber Daya Air Menurut UUD 1945. Jurnal Konstitusi, 13(2), 455–479. https://doi.org/10.31078/jk13210
  19. Liu, S., Tai, H., Ding, Q., Li, D., Xu, L., & Wei, Y. (2013). A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction. Mathematical and Computer Modelling, 58(3–4), 458–465. https://doi.org/10.1016/j.mcm.2011.11.021
  20. Llanos-Herrera, G. R., & Merigo, J. M. (2019). Overview of brand personality research with bibliometric indicators. Kybernetes, 48(3), 546–569. https://doi.org/10.1108/K-02-2018-0051
  21. Lundberg, L. (2023). Bibliometric mining of research directions and trends for big data. Journal of Big Data, 10(1). https://doi.org/10.1186/s40537-023-00793-6
  22. Maina, F. Z., Siirila-Woodburn, E. R., & Vahmani, P. (2020). Sensitivity of meteorological-forcing resolution on hydrologic variables. Hydrology and Earth System Sciences, 24(7), 3451–3474. https://doi.org/10.5194/hess-24-3451-2020
  23. Mamat, N. (2021). Hybrid Support Vector Regression Model and K-Fold Cross Validation for Water Quality Index Prediction in Langat River, Malaysia Naeimah Mamat 1* , Firdaus Mohamad Hamzah 1 , Othman Jaafar 1 1. Cv. https://doi.org/https://doi.org/10.1101/2021.02.15.431242
  24. Mausmi Rastogi. (2024). View of Advancing Water Conservation Techniques in Agriculture for Sustainable Resource Management_ A review.pdf. Journal of Geography. Environment and Earth Science International. https://doi.org/10.9734/JGEESI/2024/v28i3755
  25. Meijer, K. S., Schasfoort, F., & Bennema, M. (2021). Quantitative modeling of human responses to changes in water resources availability: A review of methods and theories. Sustainability (Switzerland), 13(15). https://doi.org/10.3390/su13158675
  26. Niu, W., & Feng, Z. (2021). Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management. https://doi.org/10.1016/j.scs.2020.102562
  27. Pathak, S., Ojha, C. S. P., Garg, R. D., Liu, M., Jato-Espino, D., & Singh, R. P. (2020). Spatiotemporal analysis of water resources in the haridwar region of uttarakhand, india. Sustainability (Switzerland), 12(20), 1–17. https://doi.org/10.3390/su12208449
  28. Patle, G. T., Kumar, M., & Khanna, M. (2020). Climate-smart water technologies for sustainable agriculture: A review. Journal of Water and Climate Change, 11(4), 1455–1466. https://doi.org/10.2166/wcc.2019.257
  29. Prastya, I. Y. (2017). PENGELOLAAN SUMBER DAYA AIR DI DAERAH KEPULAUAN (Studi di Kota Tanjungpinang Provinsi Kepulauan Riau). Jurnal Ilmu Administrasi Negara (JUAN), 5(2), 2
  30. Reyes, N. J. D. G., Geronimo, F. K. F., Guerra, H. B., & Kim, L. H. (2023). Bibliometric Analysis and Comprehensive Review of Stormwater Treatment Wetlands: Global Research Trends and Existing Knowledge Gaps. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032332
  31. Rhomad, H., Khalil, K., & Elkalay, K. (2023). Trends and hot spots of coastal science in Moroccan Atlantic coast: a bibliometric analysis. Environment, Development and Sustainability, 0123456789. https://doi.org/10.1007/s10668-023-03252-7
  32. Saraswati, A., Nath, T., Omeka, M. E., Unigwe, C. O., Anyanwu, I. E., Ugar, S. I., Latare, A., Raza, M. B., Behera, B., Adhikary, P. P., Scopa, A., & AbdelRahman, M. A. E. (2023). Irrigation suitability and health risk assessment of groundwater resources in the Firozabad industrial area of north-central India: An integrated indexical, statistical, and geospatial approach. In Frontiers in Environmental Science (Vol. 11). https://doi.org/10.3389/fenvs.2023.1116220
  33. Shah, S. H. H., Lei, S., Ali, M., Doronin, D., & Hussain, S. T. (2020). Prosumption: bibliometric analysis using HistCite and VOSviewer. Kybernetes, 49(3), 1020–1045. https://doi.org/10.1108/K-12-2018-0696
  34. Sigalla, O. Z., Valimba, P., Selemani, J. R., Kashaigili, J. J., & Tumbo, M. (2023). Analysis of spatial and temporal trend of hydro-climatic parameters in the Kilombero River Catchment, Tanzania. Scientific Reports, 13(1), 1–17. https://doi.org/10.1038/s41598-023-35105-8
  35. Soltani, F., Javadi, S., Roozbahani, A., Bavani, A. R. M., Golmohammadi, G., Berndtsson, R., Milan, S. G., & Maghsoudi, R. (2023). Assessing Climate Change Impact on Water Balance. MDPI, 15. https://doi.org/https://doi.org/10.3390/w15040813
  36. Sri, A., Wulandari, R., Ilyas, A., Hukum, F., & Hasanuddin, U. (2019). Pengelolaan Sumber Daya Air di Indonesia : Tata Pengurusan Air dalam Bingkai Otonomi Daerah. Pengelolaan Sumber Daya Air Di Indonesia: Tata Pengurusan Air Dalam Bingkai Otonomi Daerah, 6(November), 287–299
  37. Sukristiyono, S., Purwanto, R. H., Suryatmojo, H., & Sumardi, S. (2021). Analisis Kuantitas dan Kualitas Air dalam Pengembangan Pemanfaatan Sumber Daya Air Sungai di Kawasan Hutan Lindung Sungai Wain. Jurnal Wilayah Dan Lingkungan, 9(3), 239–255. https://doi.org/10.14710/jwl.9.3.239-255
  38. Taufik, I. (2019). Alokasi Air dan Pengembangan Prasarana Penyediaan Air Baku di DAS Ciliman. Jurnal Ilmu Lingkungan, 17(3), 465. https://doi.org/10.14710/jil.17.3.465-480
  39. Velasco-López, J. E., Carrasco, R. A., Cobo, M. J., & Fernández-Avilés, G. (2023). Data-driven scientific research based on public statistics: a bibliometric perspective. Profesional de La Informacion, 32(3), 1–17. https://doi.org/10.3145/epi.2023.may.14
  40. Wang, W., Straffelini, E., Pijl, A., & Tarolli, P. (2022). Sustainable water resource management in steep-slope agriculture. Geography and Sustainability, 3(3), 214–219. https://doi.org/10.1016/j.geosus.2022.07.001
  41. Wang, X., Fu, L., & He, C. (2011). Applying support vector regression to water quality modelling by remote sensing data. International Journal of Remote Sensing, 32(23), 8615–8627. https://doi.org/10.1080/01431161.2010.543183
  42. Wang, X., Ma, L., & Wang, X. (2010). APPLY SEMI-SUPERVISED SUPPORT VECTOR REGRESSION FOR. 2757–2760
  43. Wauters, M., & Vanhoucke, M. (2014). Support Vector Machine Regression for project control forecasting. Automation in Construction, 47, 92–106. https://doi.org/10.1016/j.autcon.2014.07.014
  44. Wu, Y., Meng, S., Liu, C., Gao, W., & Liang, X. Z. (2023). A bibliometric analysis of research for climate impact on agriculture. Frontiers in Sustainable Food Systems, 7(July), 1–15. https://doi.org/10.3389/fsufs.2023.1191305
  45. Yamada, Y., Zhang, X., Henderson, M. E. T., & Sagayama, H. (2022). Variation in human water turnover associated with environmental and lifestyle factors
  46. Yuan, S. T. D., Chou, S. Y., Yang, W. C., Wu, C. A., & Huang, C. T. (2017). Customer engagement within multiple new media and broader business ecosystem – a holistic perspective. Kybernetes, 46(6), 1000–1020. https://doi.org/10.1108/K-01-2017-0042
  47. Zhao, X., Wang, P., & Li, B. (2012). Soft sensor modeling for the efficiency of steam turbine last stage group using support vector machine regression. Proceedings - 2012 International Conference on Intelligent Systems Design and Engineering Applications, ISDEA 2012, 4, 1113–1116. https://doi.org/10.1109/ISdea.2012.581
  48. Zupic, I., & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629

Last update:

No citation recorded.

Last update: 2025-06-03 02:45:35

No citation recorded.