skip to main content

PERANCANGAN MEKANISME PENILAIAN DAN EVALUASI KINERJA SUPPLIER PADA PUSAT PENJUALAN DAN DISTRIBUSI X DENGAN PENDEKATAN FUZZY MULTI-CRITERIA DECISION MAKING (FMCDM) DAN ISM-FUZZY MICMAC

*Budhi Prihartono orcid scopus  -  Institut Teknologi Bandung, Indonesia
Rachel Aliya Darmawan  -  Institut Teknologi Bandung, Indonesia
Mursyida Kamilah  -  Institut Teknologi Bandung, Indonesia
Aldila Rizkiana scopus  -  Institut Teknologi Bandung, Indonesia

Citation Format:
Abstract

Pusat penjualan dan distribusi X mengalami penurunan penjualan yang besar pada tahun 2021–2023. Hal ini disebabkan oleh disrupsi eksternal, seperti pandemi global dan perubahan teknologi. Analisis internal menunjukkan kelemahan supplier, terutama dalam ketepatan pengiriman, kualitas produk, dan penanganan klaim. Ketiadaan mekanisme evaluasi supplier yang formal dan terstruktur berisiko menghambat pemulihan kondisi dan menurunkan daya saing operasional jangka panjang. Penelitian ini bertujuan membuat mekanisme penilaian dan evaluasi kinerja supplier yang strategis dan selaras dengan tujuan bisnis, dengan mengacu pada standar internasional seperti ISO 9001 dan Framework of Standards to Secure and Facilitate Global Trade (SAFE FoS). Metode penelitian menggunakan pendekatan kualitatif dan kuantitatif, termasuk gap analysis untuk merumuskan tujuan strategis dan mengembangkan kriteria yang divalidasi melalui literatur dan wawancara pemangku kepentingan. Pembobotan kriteria dilakukan dengan Fuzzy Multi-Criteria Decision Making (FMCDM), lalu pemetaan hierarkis menggunakan ISM–Fuzzy MICMAC. Hasil penelitian berupa structured scorecard, indikator, dan protokol evaluasi yang diformalkan dalam prosedur standar untuk supplier baru maupun yang sudah ada. Sistem ini memungkinkan pemantauan berkelanjutan dan penilaian objektif, sehingga meningkatkan manajemen risiko pengadaan dan mendukung efisiensi operasional pusat penjualan dan distribusi X.

 

Abstract

[Design of Supplier Performance Assessment and Evaluation Mechanism at Sales and Distribution Center X Using Fuzzy Multi-Criteria Decision Making (FMCDM) and ISM-Fuzzy MICMAC Approach]Sales and distribution center X sales decline from 2021 to 2023 due to the external disruptions, like the global pandemic and changes in technology demand. Internal analysis showed weak supplier performance, especially in on-time delivery, product quality, and claim handling. No formal and clear supplier evaluation system risks slowing recovery and cutting long-term competitiveness. This study aims to make a strategic supplier assessment and evaluation system that matches business goals and follows global standards like ISO 9001 and the Framework of Standards to Secure and Facilitate Global Trade (SAFE FoS). The study uses both qualitative and quantitative methods, including gap analysis to set goals and build criteria, checked by literature and interviews with stakeholders. Criteria are weighted with Fuzzy Multi-Criteria Decision Making (FMCDM) and hierarchical mapping with ISM–Fuzzy MICMAC. The research output includes a structured scorecard, indicators, and standard evaluation steps that helps ongoing monitoring, fair assessment, and higher operational efficiency.

Keywords: Fuzzy Multi-Criteria Decision Making (FMCDM); Interpretive Structural Modeling (ISM); Matrice d'Impacts Croisés Appliquée à un Classement (MICMAC); supplier performance; performance assessment indicators

Fulltext View|Download
Keywords: Fuzzy Multi-Criteria Decision Making (FMCDM); indikator penilaian kinerja; Interpretive Structural Modeling (ISM); kinerja supplier; Matrice d'Impacts Croisés Appliquée à un Classement (MICMAC)
Funding: -

Article Metrics:

  1. Afrasiabi, A., Tavana, M., & Di Caprio, D. (2022). An extended hybrid fuzzy multi-criteria decision model for sustainable and resilient supplier selection. Environmental Science and Pollution Research, 29(25), 37291–37314. https://doi.org/10.1007/s11356-021-17851-2
  2. Alastal, H., Sharaf, A., Mahmoud, S., Alsaidi, O., & Bahroun, Z. (2025). Integrating Multipe Criteria Decision-Making Techniques in Sustainable Supplier Selection: A Comprehensive Review. Decision Making: Applications in Management and Engineering, 8(1), 380–400. https://doi.org/10.31181/dmame8120251243
  3. Alkiayat, M. (2021). A Practical Guide to Creating a Pareto Chart as a Quality Improvement Tool. Global Journal on Quality and Safety in Healthcare, 4(2), 83–84. https://doi.org/10.36401/JQSH-21-X1
  4. Blom, T., & Niemann, W. (2022). Managing reputational risk during supply chain disruption recovery: A triadic logistics outsourcing perspective. Journal of Transport and Supply Chain Management, 16. https://doi.org/10.4102/jtscm.v16i0.623
  5. Cheshmberah, M. (2020). Developing an Integrated Framework for Supplier Evaluation based on Relevant Attributes and Performance Measures. Logistics & Sustainable Transport, 11(1), 101–113. https://doi.org/10.2478/jlst-2020-0007
  6. Chopra, S., & Meindl, P. (2016). Supply Chain Management: Strategy, Planning, and Operation: Global Edition (6th ed.)
  7. Dharmadasa, N., De Silva, M. M., Thibbotuwawa, A., Nakayama, T., & Nielsen, I. I. (2023). Using an ISO 9001 Based Framework as a Benchmark to Identify Best Practices Used by Sri Lankan Practitioners when Selecting Suppliers. Dalam A. Burduk, A. Batako, J. Machado, R. Wyczółkowski, K. Antosz, & A. Gola (Ed.), Advances in Production (Vol. 790, hlm. 243–254). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-45021-1_18
  8. Hailiang, Z., Khokhar, M., Islam, T., & Sharma, A. (2023). A model for green-resilient supplier selection: Fuzzy best–worst multi-criteria decision-making method and its applications. Environmental Science and Pollution Research, 30(18), 54035–54058. https://doi.org/10.1007/s11356-023-25749-4
  9. Hong, J., Quan, Y., Tong, X., & Lau, K. H. (2024). A hybrid ISM and fuzzy MICMAC approach to modeling risk analysis of imported fresh food supply chain. Journal of Business & Industrial Marketing, 39(2), 124–141
  10. International Organization for Standardization. (2015). ISO 9001:2015 Quality Management Systems—Requirements. International Organization for Standardization. https://www.iso.org/standard/62085.html
  11. Mahmoud, M., AL-Kindi, L., & Hady, H. (2018). Applying Fuzzy Multi-Criteria Decision Making and Different Techniques to Solve Multi Objective Project Planning. Engineering and Technology Journal, 36(5A), 533–545. https://doi.org/10.30684/etj.36.5A.9
  12. Neely, A., Mills, J., Platts, K., Richards, H., Gregory, M., Bourne, M., & Kennerley, M. (2000). Performance measurement system design: Developing and testing a process-based approach. International Journal of Operations and Production Management, 20(10), 1119–1145. https://doi.org/10.1108/01443570010343708
  13. Wang, Y.-J. (2014). A criteria weighting approach by combining fuzzy quality function deployment with relative preference relation. Applied Soft Computing, 14, 419–430
  14. World Customs Organization. (2021). SAFE Framework of Standards to Secure and Facilitate Global Trade (SAFE Fos) [Framework of Standards]. World Customs Organization. https://www.wcoomd.org/en/topics/facilitation/instrument-and-tools/frameworks-of-standards/safe_package.aspx
  15. Yildizbasi, A., & Arioz, Y. (2022). Green supplier selection in new era for sustainability: A novel method for integrating big data analytics and a hybrid fuzzy multi-criteria decision making. Soft Computing, 26(1), 253–270. https://doi.org/10.1007/s00500-021-06477-8

Last update:

No citation recorded.

Last update: 2026-02-02 09:22:17

No citation recorded.