skip to main content

Effect of feeding level on growth rate, carcass characteristics and meat quality of thin tailed lambs

N. Luthfi  -  Faculty of Animal Husbandry, University of Darul Ulum Islamic Centre Sudirman GUPPI, Indonesia
R. Adiwinarti  -  Faculty of Animal and Agricultural Sciences, Diponegoro University, Indonesia
A. Purnomoadi  -  Faculty of Animal and Agricultural Sciences, Diponegoro University, Indonesia
*E. Rianto  -  Faculty of Animal and Agricultural Sciences, Diponegoro University, Indonesia
Open Access Copyright (c) 2022 Journal of the Indonesian Tropical Animal Agriculture
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

A study was conducted to investigate the growth rate and carcass characteristics of lambs under different feeding levels. Twenty one lambs (3 months old) were allocated into 3 treatments of feeding levels, namely 4% of body weight (BW) (T1), 5.5% of BW (T2) and provided ad libitum (T3). The diet contained 13.74% of CP and 61.79% of TDN. The lambs were raised to reach 25 kg BW, before being slaughtered. The parameters observed were dry matter intake (DMI), dry matter digestibility (DMD), body weight gain (BWG), feed conversion ratio (FCR), carcass production, meat-bone ratio (MBR), fat distribution, chemical composition of meat and fatty acids profile. The data obtained were analyzed by analysis of variance and continued by Duncan's multi-range test if there was any significant difference among the treatments. The results showed that the average of DMD was 59.71% (P>0.05). The lambs fed T3 had the highest BWG (203 g/day), the lowest FCR (6.8) and the shortest rearing time (67 days) (P<0.01). The average of carcass percentage was 46.36% and meat production was 6,931 g (P>0.05). The lambs of T3 had the heaviest carcass fat (2,698 g), the lightest carcass bone (1,985 g), the highest MBR (3.6), and the highest PUFA to SFA ratio (0.55). It can be concluded that the higher the feeding level resulted in the higher growth rate, the lower feed conversion ratio, higher meat-bone ratio and higher carcass fat production, lower feed conversion ratio and the shorter rearing time; but did not af-fect the meat quality.

Fulltext View|Download
Keywords: carcass production; feed efficiency; feeding level; lambs; growth rate

Article Metrics:

  1. Abouheif M., H. Al-Sornokh, A. Swelum, H. Yaqoob, A. Al-Owaimer. 2015. Effect of different feed restriction regimens on lamb performance and carcass traits. Rev Bras Zootec, 44 : 76-82
  2. AOAC. 2016. Official Methods of Analysis Assoc. Off. Anal. Chem., Arlington, VA. Washington, DC, USA
  3. Andr´es, S., Jaramillo, E., Mateo, J., Caro, I., Carballo, D.E., L´opez, S., Gir´aldez, F.J. 2019. Grain grinding size of cereals in complete pelleted diets for growing lambs:effects on animal performance, carcass and meat quality traits. Meat Sci. 157
  4. Araújo J.C., A.C.S. Lima, M.P.M. Nunes, M.A.P. Sousa, G.X. Serrão, E.C. Morais, L.C.C. Daher, A.G.M. Silva. 2020. Relationships among carcass shape, tissue composition, primal cuts and meat quality traits in lambs: A PLS path modeling approach, Small Ruminant Research, Volume 182: 52-66
  5. Atti, N., and Mahouachi, M. 2011. The effects of diet, slaughter weight and docking on growth, carcass composition and meat quality of fat-tailed Barbarine lambs. A review. Tropical Animal Health and Production, 43(7): 1371–1378
  6. Brito F.L., J.C. McEwan, S. Miller, W. Bain, M. Lee, K. Dodds, S. Newman, N. Pickering, F.S. Schenkel, S. Clarke. 2017. Genetic parameters for various growth, carcass and meat quality traits in a New Zealand sheep population. Small Rumin. Res., 154 : 81-91
  7. Carrillo-Muro O., A. Rivera-Villegas, P. Hernández-Briano, M.A. López-Carlos, J.I. Aguilera-Soto, A. Estrada-Angulo, C.A. Medina-Flores, F. Mendez-Llorente. 2022. Effect of calcium propionate level on the growth performance, carcass characteristics, and meat quality of feedlot ram lambs, Small Ruminant Research,Volume 207, 106618
  8. Giráldez F.J., N. Santos, A. Santos, C. Valdés, S. López, S. Andrés. 2021.Fattening lambs with divergent residual feed intakes and weight gains: Unravelling mechanisms driving feed efficiency, Animal Feed Science and Technology, 273:114821
  9. Hegarty R.S., R.D. Warner, D.W. Pethick. 2006. Genetic and nutritional regulation of lamb growth and muscle characteristics. Australian Journal of Agricultural Research, 57 : 721-730
  10. Herath H.M.G.P., S.J. Pain, P.R. Kenyon, H.T. Blair, P.C.H. Morel. 2021. Effect of dietary protein to energy ratio on growth performance of pre-and post-weaned lambs, Animal Feed Science and Technology, Volume 272, 11478
  11. Hopkins D.L., D.F. Stanley, L.C. Martin, E.N. Ponnampalam, R. van de Ven. 2007. Sire and growth path effects on sheep meat production. 1. Growth and carcass characteristics Australian Journal of Experimental Agriculture, 47: 1208-1218
  12. Hopkins D.L., S.I. Mortimer. 2014. Effect of genotype, gender and age on sheep meat quality and a case study illustrating integration of knowledge. Meat Sci., 98 : 544-555
  13. Jaborek J.R., H.N. Zerby, S.J. Moeller, F.L. Fluharty. 2018. Effect of energy source and level, and sex on growth, performance, and carcass characteristics of long-fed lambs, Small Ruminant Research, Volume 167: 61-69
  14. Jatnika A. R., M. Yamin , R. Priyanto , & L. Abdullah. 2019. Komposisi Dan Karateristik Jaringan Karkas Domba Ekor Tipis Yang Diberi Ransum Berbasis Indigofera zollingeriana Pada Sistem Pemeliharaan Yang Berbeda. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan. Vol. 07 No. 3: 111-119
  15. Jayanegara A., M. Ridla, D. A. Astuti, K. G. Wiryawan, E. B. Laconi, and Nahrowi. 2017. Determination of Energy and Protein Requirements of Sheep in Indonesia using a Meta-analytical Approach. Media Peternakan, 40 (2):118-127
  16. Lara M.S. Brant, José E. de Freitas Júnior, Fabiano M. Pereira, Douglas dos S. Pina, Stefanie A. Santos, Laudí C. Leite, Luís G.A. Cirne, Henry D.R. Alba, Maria L.G.M.L. de Araújo, Paulo R.S. Pimentel, Gleidson G.P. de Carvalho. 2021. Effects of alternative energy and protein sources on performance, carcass characteristics, and meat quality of feedlot lambs, Livestock Science, Volume 251, 104611,
  17. Lima Montelli, N.L.L., A. Katiane de Almeida, C. R. F. Ribeiro, M.D. Grobe, M.A. F. Abrantes, G.S. Lemos, I.F.F. Garcia, I.G. Pereira. 2019. Performance, feeding behavior and digestibility of nutrients in lambs with divergent efficiency traits, Small Ruminant Research, Volume 180: 50-56,
  18. McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair and R. G. Wilkinson. 2010. Animal Nutrition, Seventh Edition. Prentice Hall, Harlow (England),
  19. McLeod, K. R., Baldwin, VI, R. L., Solomon, M. B., and Baumann, R. G. 2007. Influence of ruminal and postruminal carbohydrate infusion on visceral organ mass and adipose tissue accretion in growing beef steers. J. Anim. Sci. 85, 2256-2270
  20. Meersmann, H.J., Smith, S.B., 2005. Development of white adipose tissue lipid metabolism. In: Burrin, D.G., Mersmann, H.H. (Eds.), Biology and Metabolism of Growing Animals. Elsevier Science BV, Amsterdam, pp. 275-302
  21. MoloneyA.P., Mark McGee. 2017. Chapter 2 - Factors Influencing the Growth of Meat Animals, Editor(s): Fidel Toldra´, In Woodhead Publishing Series in Food Science, Technology and Nutrition, Lawrie´s Meat Science (Eighth Edition), Woodhead Publishing, Pages 19-47
  22. Neto SG, Bezerra L.R, Medeiros AN, Ferreira MA, Pimenta Filho EC, Candido EP, and Oliveira RL. 2011. Feed Restriction and Compensatory Growth in Guzer? Females. Asian-Australasian Journal of Animal Sciences. 24: 791 – 799
  23. NRC Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and NewWorld Camelids National Academy Press, Washington, DC (2007), p. 384
  24. Oksbjerg, N. and Therkildsen, M., 2017. Myogenesis and muscle growth and meat quality. In: Purslow, P.P. (Ed.), New Aspects of Meat Quality; from Genes to Ethics.Woodhead (Elsevier): 33-62
  25. Paredes, S. P., Kalbe, C., Jansman, A. J. M., Verstegen, M. W. A., Hees, H. M. J. van, Lösel, D., & Rehfeldt, C. (2013). Predicted high-performing piglets exhibit more and larger skeletal muscle fibers. J Anim Sci. 91(12):5589–5598
  26. Perez P., M. Maino, G. Tomic, E. Mardones, J. Pokniak. 2002. Carcass characteristics and meat quality of Suffolk Down suckling lambs. Small Rumin.Res., 44: 233-240
  27. Petrovic M.P., D.R. Muslic, V.C. Petrovic, N. Maksimovic. 2011. Influence of environmental factors on birth weight variability of indigenous Serbian breeds of sheep. Afr. J. Biotechnol., 10 : 4673-4676
  28. Prache S., N. Schreurs, L. Guillier. 2022. Review: Factors affecting sheep carcass and meat quality attributes, Animal, Volume 16, Supplement 1, 100330
  29. Prakash V., L.L.L. Prince, G.R. Gowane, A.L. Arora. 2012. Factors affecting post-weaning average daily gain and Kleiber ratios in Malpura sheep. Indian J. Anim. Sci., 82 (12): 1598-1600
  30. Prima, A., Purbowati, E., Rianto, E., Purnomoadi, A. 2019. The effect of dietary protein levels on body weight gain, carcass production, nitrogen emission, and efficiency of productions related to emissions in thin-tailed lambs. Veterinary world, 12(1), 72–78
  31. Rianto, E., M.K. Hill and J.V. Nolan. 1998. The Effect of Diet Quality on Feed Intake, Feed Digestibility and Growth Rate of Lambs at Ambient Temperature of 20 and 30oC. Bulletin of Anim. Sci., Suppl. Ed. October 1998: 216-222
  32. Riaz M.Q., K.-H. Südekum, M. Clauss, A. Jayanegara. 2014. Voluntary feed intake and digestibility of four domestic ruminant species as influenced by dietary constituents: A meta-analysis, Livestock Science, Volume 162: 76-85
  33. Ríos-Rincón F. G., A. Estrada-Angulo, A. Plascencia,1 M. A. López-Soto,1 B. I. Castro-Pérez, J. J. Portillo-Loera, J. C. Robles-Estrada, J. F. Calderón-Cortes,1 and H. Dávila-Ramos. 2014. Influence of Protein and Energy Jumlah in Finishing Diets for Feedlot Hair Lambs: Growth Performance, Dietary Energetics and Carcass Characteristics. Asian-Australas J Anim Sci. 27 (1): 55–61
  34. Santos, A., F. J. Giráldez, J. Mateo, J. Frutos and S. Andrés. 2018. Programming Merino lambs by early feed restriction reduces growth rates and increases fat accretion during the fattening period with no effect on meat quality traits. Meat Sci. 135 : 20-26
  35. Schreurs N.M., and P.R. Kenyon. 2017. Factors affecting sheep carcass characteristics J. Greyling (Ed.), Achieving sustainable production of sheep, Burleigh Dodds Science Publishing Limited, Cambridge, UK. pp. 3-27
  36. Selvaggi, M., Laudadio, V., D’Alessandro, A.G., Dario, C., Tufarelli, V., 2017. Comparison on accuracy of different nonlinear models in predicting growth of Podolica bulls. Anim. Sci. J. 88, 1128–1133
  37. Simões J., J.A. Abecia, A. Cannas, J.A. Delgadillo, D. Lacasta, K. Voigt, P. Chemineau. 2021. Review: Managing sheep and goats for sustainable high yield production. Animal, Volume 15, Supplement 1. 100293
  38. Xu G.S., T. Ma, S.K. Ji, K.D. Deng, Y. Tu, C.G. Jiang, Q.Y. Diao. 2015.Energy requirements for maintenance and growth of early-weaned Dorper crossbred male lambs, Livestock Science, Volume 177: Pages 71-78,
  39. Ye Y., N.M. Schreurs, P.L. Johnson, R.A. Corner-Thomas, M.P. Agnew, P. Silcock, G.T. Eyres, G. Maclennan, C.E. Realini. 2020. Carcass characteristics and meat quality of commercial lambs reared in different forage systems, Livestock Science, Volume 232, 103908
  40. Zebeli Q., J.R. Aschenbach, M. Tafaj, J. Boghun, B.N. Ametaj, W. Drochner. 2012. Invited review: role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. J. Dairy Sci., 95 (2012), pp. 1041-1056

Last update:

  1. The effect of feeding level on protein and energy utilization in young and mature Kacang goats

    N Luthfi, E Rianto, N Mukminah, C M S Lestari, E Purbowati, A Purnomoadi. IOP Conference Series: Earth and Environmental Science, 1377 (1), 2024. doi: 10.1088/1755-1315/1377/1/012076
  2. The use of body measurements to estimate body, carcass, meat and bone weight of young Jawarandu bucks

    N Luthfi, Sumadi, H S Suryani, E Rianto. IOP Conference Series: Earth and Environmental Science, 1377 (1), 2024. doi: 10.1088/1755-1315/1377/1/012075

Last update: 2024-11-24 08:24:59

No citation recorded.