Jaringan Syaraf Tiruan Perambatan Balik Untuk Pengenalan Wajah
DOI: https://doi.org/10.21456/vol6iss1pp30-37
Abstract
Keywords
Full Text:
FULLTEXT PDFReferences
Alasdair. M., 2004. An Introduction to Digital Image Processing with Matlab. Notes for SCM2511 Image Processing 1, School of Computer Science and Mathematics Victoria University of Technology.
Agustin. M., 2012. Penggunaan jaringan syaraf tiruan backpropagation untuk seleksi penerimaan mahasiswa baru pada jurusan teknik komputer di Politeknik Negeri Sriwijaya. Tesis, Universitas Diponegoro, Semarang.
Antara, I.P.R, Sumarminingsih. E, Handoyo. S., 2010. Model jaringan syaraf tiruan backrpopagation dengan input berdasarkan model regresi terbaik. Tesis, Universitas Brawijaya, Malang.
Levi. Ki, Weiss. Y., 2004. Learning object detection from a small number of examples: the importance of good features, Proceedings of CVPR 2004 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 53–60.
Li. S.Z, Zhang. Z., 2004. Floatboost learning and statistical face detection, IEEE Trans. Pattern Anal. Mach. Intell. 26 (9) 1112–1123.
Lienhart. R, Maydt, J., 2002. An extended set of Haar-like features for rapid object detection, Proceedings of ICIP 2002 IEEE International onference on Image Processing, vol. 1, pp. 900–903.
Matondang. Z.A., 2013. Jaringan Syaraf Tiruan Dengan Algoritma Backpropagation Unuk Penentuan Kelulusaan Sidang Skripsi, ISSN 2301-9425.
Mita. T, Kaneko. T., 2005. O. Hori, Joint Haar-like features for face detection, Proceedings of ICCV 2005 10th IEEE International Conference on Computer Vision, vol. 2, pp. 1619–1626.
McAndrew Alasdair., 2004. An Introduction to Digital Image Processing with Matlab, Notes for SCM2511 Image Processing 1, School of Computer Science and Mathematics Victoria University of Technology.
Pambudi. W.S, Simorangkir. B.M.N., 2012. Facetracker Menggunakan MetodeHaar like feature dan PID Model Simulasi, Jurnal Teknologi dan Informatika (TEKNOMATIKA).
Pan. H, Zhu. Y, Xia. L., 2013. Efficient and accurate face detection using heterogeneous feature descriptors and feature selection, International Journal of Computer Vision and Image Understanding, 117, 12-28.
Pham. M.T, Cham. T.J., 2007. Fast training and selection and Haar features using statistics in boosting-based face detection, Proceedings of ICCV 2007 11th IEEE International Conference on Computer Vision, pp. 1–7.
Sutojo. T, Mulyanto. E, Suharto. V., 2010. Kecerdasan Buatan, Andi, Yogyakarta.
Te-Hsiu. S and Fang-Chin. T., 2008. Using backpropagation neural network for face recognation with 2D + 3D hybrid information, Expert System with Application, 35, 361-372.
Viola, Paul and Jones. J., 2001. Rapid object detection using boosted cascade of simple features, Proceedings IEEE Conf. on Computer Vision and Pattern Recognition.
Zhang. J, Ji. N, liu. J, Pan. J, Meng. D., 2015. Enhancing performance of the backpropagation algorithm via sparse response regularization, International Journal of Neurocomputing, 153, 20-40.
Copyright (c)