Ekstraksi Informasi Semantik dan Spatiotemporal pada Artikel Online Terkait Bencana di Indonesia

*Ashr Hafiizh Tantri orcid  -  Institut Teknologi Sepuluh Nopember, Indonesia
Nur Aini Rakhmawati orcid scopus  -  Institut Teknologi Sepuluh Nopember, Indonesia
Received: 5 Feb 2020; Revised: 8 Jul 2020; Accepted: 10 Jul 2020; Published: 7 Aug 2020; Available online: 7 Aug 2020.
Open Access
Citation Format:
Abstract

Indonesia is one country that has a high risk of natural disasters. Ranked in 36 out of 172 countries in disaster index and having 2,372 disaster incidents in 2017, actions need to be taken to minimize the impact of natural disasters. One of it is to do a hazard map modeling. In making hazard maps, several approaches can be used, one of which is the semantic approach to extract disaster information. Therefore, this study aims to develop a system that can be used to extract spatiotemporal and semantic information related to natural disasters in Indonesia. This study uses the NLP method in conducting the information extraction process and  carried out using the GATE (General Architecture for Text Engineering) application. In processing Indonesian language articles, it is necessary to develop the plugin because the Indonesian information structure is different from the default information structure in GATE application. The plugin development process is done by using ontology as the basis for determining semantic information. Literature study was carried out related to government regulations that further explained the need for semantic and spatiotemporal information about disaster events. system performance developed produces a precision value of 38% and a recall value of 32%. this is because the system experiences some difficulties in carrying out the information inference process. The reason for low precision rate is because the rules used in the inference process to pair the three types of information still cannot accommodate the variation of information positions in different sentences.

Keywords: Indonesia; Information Extraction; Natural Disaster; Online News Article; Semantic

Article Metrics:

  1. Amri, M.R., Yulianti, G., Yunus, R., Wiguna, S., Adi, A.W., Ichwana, A.N., Randongkir, R.E., Septian, R.T., 2006. Risiko Bencana Indonesia 218 pp
  2. Anggareska, D., Purwarianti, A., 2014. Information Extraction of Public Complaints on Twitter Text For Bandung Government. 2014 Int. Conf. Data Softw. Eng. 1–6
  3. Balai Besar Wilayah III Denpasar, BMKG, 2013. Gempabumi [WWW Document]. Badan Meteorol. Klimatologi dan Geofis. Wil. 3 Denpasar. URL http://balai3.denpasar.bmkg.go.id/tentang-gempa (accessed 3.27.19)
  4. Boustan, L.P., Kahn, M.E., Rhode, P.W., Yanguas, M.L., 2017. The Effect of Natural Disasters on Economic Activity in US Counties: A Century of Data. Natl. Bur. Econ. Res. Work. Pap. Ser. No. 23410
  5. Data Informasi Bencana Indonesia, 2017. Bencana Menurut Jenisnya di Indonesia Tahun 1815 s/d 2019 [WWW Document]. Badan Nas. Penanggulangan Bencana. URL http://bnpb.cloud/dibi/tabel1 (accessed 3.27.19)
  6. Edirisooriya, K. V.D., Vitanage, N.S., Uluwaduge, P., Senevirathna, E.M.T.K., 2018. Understanding Disaster Risk and Mitigation Special Reference to Ratnapura District. Procedia Eng. 212, 1034–1039
  7. Fauzan, R., Basuki, S., 2016. Purwarupa Website Manajemen Bencana. Semin. Nas. Ris. Terap. 5662, 9–10
  8. Fauzi Lailil; Setiyoaji, Agung, M.A.M., 2017. Named Entity Recognition Menggunakan Hidden Markov Model dan Algoritma Viterbi pada Teks Tanaman Obat. J. Pengemb. Teknol. Inf. dan Ilmu Komput. 1858–1864
  9. Fauziati, S., Watanabe, K., 2010. Hazard Ontology Indonesia 2010 Ontology of Volcano System and Volcanic Hazards Assessment.pdf. Int. J. Geoinformatics 6, 49–61
  10. Gruninger, M., Fox, M.S., 1995. Methodology for the Design and Evaluation of Ontologies 1 Introduction 2 Motivating Scenarios. Ijcai 95, 1–10
  11. Gruninger, M., Uschold, M., 1996. Ontologies: Principles, Methods, and Applications. Knowl. Eng. Rev. 11
  12. Heintze, H.J., Kirch, L., Kuppers, B., Mann, H., Mischo, F., Mucke, P., Pazdriernt, T., Prutz, R., Radtke, K., Strube, F., Weller, D., 2018. World Risk Report 2018 Focus: Child Protection and Children’s Rights
  13. Information Commisioner’s Office, 2014. What is spatial information? [WWW Document]. ico. URL https://ico.org.uk/for-organisations/inspire-regulations/what-is-spatial-information/ (accessed 5.20.19)
  14. KBBI, 2016. Artikel [WWW Document]. Kamus Besar Bhs. Indones. URL https://kbbi.web.id/artikel (accessed 2.4.20)
  15. Kementerian Dalam Negeri Republik Indonesia, 2017. Permendagri No.137 Tahun 2017 Tentang Kode Dan Data Wilayah Administrasi Pemerintahan [WWW Document]. URL https://www.kemendagri.go.id/pages/detail/108-permendagri-no137-tahun-2017https://www.kemendagri.go.id/pages/detail/108-permendagri-no137-tahun-2017 (accessed 5.20.19)
  16. Kirkpatrick, H., 2018. Can technology reduce the impact of natural disasters? - IoT Agenda [WWW Document]. Internet Things news, blogs Anal. URL https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Can-technology-reduce-the-impact-of-natural-disasters (accessed 3.27.19)
  17. Kusdiyana, E., 2002. Kontrastif Antara Bahasa Jepang Dengan Bahasa Indonesia Ditinjau Dari Segi Preposisi
  18. Lanin, I., 2016. Huruf Kapital [WWW Document]. PUEBI Daring. URL https://puebi.readthedocs.io/en/latest/huruf/huruf-kapital/ (accessed 12.11.19)
  19. Lee, D., Zhang, H., Nguyen, C., 2018. The Economic Impact of Natural Disasters in Pacific Island Countries: Adaptation and Preparedness. IMF Work. Pap. 18, 1
  20. Nadeau, D., Sekine, S., 2007. A survey of named entity recognition and classification. Lingvisticae Investig. 30, 3–26
  21. NCERT, 2012. PRACTICAL WORK in Geography PART II. New Delhi
  22. Noy, N.F., McGuinness, D.L., 2000. Ontology Development 101: A Guide to Creating Your First Ontology [WWW Document]. Stanford Univ. URL http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html (accessed 4.1.19)
  23. Okurowski, M.E., 1993. Information extraction overview. In: Proceedings of a Workshop on Held at Fredericksburg. Association for Computational Linguistics, Virginia, pp. 117–121
  24. Pusat Data Informasi dan Humas, 2019. Trend Bencana Indonesia Tahun 2003 - 2017 [WWW Document]. BNPB - Badan Nas. Penanggulangan Bencana. URL https://bnpb.go.id/publikasi/infografis/trend-bencana-2013-2017.html (accessed 3.27.19)
  25. Undang-Undang Republik Indonesia Nomor 24 Tahun 2007 Tentang Penanggulangan Bencana, Lembaraan Negara RI Tahun 2007. Jakarta
  26. Romli, Asep Syamsul M. (2012). Jurnalistik Online. Bandung: Nuansa Cendikia Rosdakarya
  27. Roy, S., 2017. Named Entity Recognition. AKGEC Int. J. Technol. 8, 38–41
  28. Traverso, S., Cerutti, V., Stock, K., Jackson, M., 2014. EDIT: A Methodology for the Treatment of Non-authoritative Data in the Reconstruction of Disaster Scenarios 32–45
  29. Wang, W., Stewart, K., 2014. Creating Spatiotemporal Semantic Maps from Web Text Documents. Space-Time Integr. Geogr. GIScience 157–174
  30. Wang, W., Stewart, K., 2015. Spatiotemporal and semantic information extraction from Web news reports about natural hazards. Comput. Environ. Urban Syst. 50, 30–40
  31. World Health Organization, 2008. Natural events [WWW Document]. WHO | World Heal. Organ. URL https://www.who.int/environmental_health_emergencies/natural_events/en/ (accessed 3.27.19)

Last update: 2021-02-28 01:28:35

No citation recorded.

Last update: 2021-02-28 01:28:36

No citation recorded.