skip to main content

Algoritma C4.5 Untuk Klasifikasi Kelayakan Kredit Calon Debitur Pada Sistem Informasi Penjualan

*Raymond Sutjiadi orcid scopus publons  -  Institut Informatika Indonesia Surabaya, Indonesia
Titasari Rahmawati  -  Institut Informatika Indonesia Surabaya, Indonesia
Anindya Ayu Prahartiwi  -  Institut Informatika Indonesia Surabaya, Indonesia
Open Access Copyright (c) 2022 JSINBIS (Jurnal Sistem Informasi Bisnis)

Citation Format:
Abstract

In the era of information technology, the internet can be used as a medium to sell goods easily. By using the web-based information system, market coverage can be leveraged and the probability of getting customers is bigger. In a transaction, especially in the retail market, the process of buying is usually carried out using a credit payment system. Of course, in order to approve credit application is required scrutiny assessment from creditor to debtor profile to guarantee the payment continuity. In this research is developed a sales information system, which is integrated with creditworthiness determination feature using C4.5 algorithm. In this system, customers are able to buy and also apply credit. The credit application process can be rejected or accepted by the admin by looking at the credit trustworthiness as the result of C.45 algorithm process. By using this feature can be determined whether a debtor is qualified or not to receive credit, based on profile qualification such as occupation type, number of dependents, and domicile status. To develop information systems is used the method of Incremental Model. This method is chosen to prioritize the finishing system by its urgency, separated into several sub-processes, i.e., sales information system, account management, purchasing, and admin. The system implementation result is tested using the Black-Box Testing method, which is considered the most effective to test the system comprehensively. Also, from the test result of creditworthiness determination feature is obtained accurate result with the average value of Precision = 0.876, Recall = 0.952, and F-Measure = 0.912.

Note: This article has supplementary file(s).

Fulltext View|Download |  Copyright Transfer Agreement
Perjanjian Pengalihan Hak Cipta
Subject
Type Copyright Transfer Agreement
  Download (871KB)    Indexing metadata
Keywords: Black Box Testing; Credit Worthiness; C4.5 Algorithm; Incremental Model; Sales Information System

Article Metrics:

  1. Augusta, T., Pangestu, M.A., Mara, D. A., Indriyani, T., 2021. Implementasi model incremental pada sistem informasi klinik nurani jaya berbasis desktop. Seminar Nasional Teknik Elektro, 275-282
  2. Desyanita, L., Wibowo, A., 2020. Pemodelan sistem prediksi kelayakan pengajuan kredit kepemilikan rumah dengan metode c4.5 dan naive bayes. Jurnal Elektronika dan Komputer 13 (2), 10-22
  3. Elisa, E., Harman. R., 2019. Algoritma C4.5 untuk klasifikasi pemilihan calon ketua rw. Jurnal Informasi Dan Komputer 7 (2), 71-80
  4. Fitriani, E., 2020. Perbandingan algoritma c4.5 dan naïve bayes untuk menentukan kelayakan penerima bantuan program keluarga harapan. Sistemasi: Jurnal Sistem Informasi 9 (1), 103-115
  5. Harlina, S., 2018. Data mining pada penentuan kelayakan kredit menggunakan algoritma k-nn berbasis forward selection. Creative Communication and Innovative Technology Journal 11 (2), 236-244
  6. Hastasari, R., Suharini., 2021. Tinjauan non-performing loan perbankan indonesia tahun pandemi 2020. Jurnal Akrab Juara, 6 (1), 120-131
  7. Kurniawan, T., 2019. Rancang bangun aplikasi pembayaran cicilan kredit berbagai toko menggunakan dompet digital ovo. Jurnal Sistem Informasi dan Teknologi, 2 (1), 95-102
  8. Kurniawan, Y.I., 2018. Perbandingan algoritma naive bayes dan c.45 dalam klasifikasi data mining. Jurnal Teknologi Informasi dan Ilmu Komputer 5 (4), 455-464
  9. Martawardaya, B., Zaini, B., Octaviano, R., Nugroho, A.S., Mahardika, H., Nurtomo, F., Wicaksono, T.Y., 2019. Ekonomi digital yang inklusif di indonesia:Perspektif Gender, Regional dan Sektoral, Laporan Penelitian, Institute for Development of Economics and Finance (INDEF) dan Lab Data Persada
  10. Pressman, R.S., 2015. Rekayasa perangkat lunak: pendekatan praktisi buku Andi Yogyakarta
  11. Quinlan, J.R., 2014. C4.5: Programs for machine learning. California: Morgan Kaufmann Publishers
  12. Santoso, T.B., Sekardiana, D., 2019. Penerapan algoritma c4.5 untuk penentuan kelayakan pemberian kredit. Jurnal Algoritma, Logika dan Komputasi 2 (1), 130-137
  13. Soekapdjo, S., Tribudhi, D.A., 2020. Pengaruh faktor eksternal dan internal terhadap kredit bermasalah perbankan konvensional di indonesia. Kinerja 17 (2), 278-286
  14. Sugiatna, E., Ibrahim, A.M., Hadi, I.A., 2019. Implementasi algoritma klasifikasi c4.5 untuk memprediksi kelayakan pembelian kendaraan. Jurnal Teknologi Informasi dan Multimedia 1 (2), 124-132
  15. Sunarti., 2021. Klasifikasi penentuan kelayakan pemberian pinjaman pada koperasi karyawan menggunakan algoritma c4.5. Journal of Information System 6 (1), 1-8
  16. Syafrianto, A., 2015. Sistem pendukung keputusan penentuan kelayakan kredit pinjaman ukm di koperasi sejahtera. Jurnal Ilmiah Data Manajemen dan Teknologi Informasi 16 (4), 11-16
  17. Wibowo, A., Kunendra, K., 2017. Sistem pendukung keputusan penilaian kelayakan kredit menggunakan metode simple additive weighting (saw). Journal of Applied Informatics and Computing 1 (1), 22-25

Last update:

No citation recorded.

Last update: 2024-11-10 02:01:21

No citation recorded.