Metode Jaringan Syaraf Tiruan Untuk Prediksi Performa Mahasiswa Pada Pembelajaran Berbasis Problem Based Learning (PBL)

In order to improve academic quality in higher education, students’ performance evaluation is becoming important. To prevent increasing failure rate in the course, we need a system that is capable of predicting student’s performance in the end of the course. The research used several factors that are considered to affect students' performance on Problem Based Learning (PBL), such as students’ demography, students’ prior knowledge and group heterogeneity. The method used in the study was Artificial Neural Network (ANN) with backpropagation training algorithm. Total 8 neurons were used as inputs for ANN which were obtained from gender variable (2 neurons), age variable (1 neuron), students’ average knowledge variable (1 neuron), students’ average skill variable (1 neuron) and group heterogeneity variable (3 neurons). Several different ANN architecture were tested in the study using 2, 7 and 12 hidden neurons respectively. Each architecture was trained using various different training parameters in order to find the best ANN architecture. Dataset used in the research were obtained from Academic Information System in Faculty of Dentistry Unissula which contained Adult and Elderly Diseases Course’s participants from year 2009 to 2013. The ANN output were numeric values which represented students’ performance in Adult and Elderly Diseases Course. The output of this study is a system that is able to predict the student performance in block course. The result shows that using 7 hidden neurons in the network combining with 0.5 ,0.1 and 9000 for learning rate, momentum and epoch respectively, were the best ANN architechture and parameters in the study. The MSE obtained from validation test was 0,011926 with correlation coefficient (R) 0,796879. The prediction system are expected to help faculty and academic evaluation team to conduct actions to improve student’s academic performance and prevent them from failure in the course.
Article Metrics:
- Alajmi, N., 2014. Factors that influence performance in problem-based learning tutorial. Ph.D dissertation, Bond University Faculty of Health Science and Medicine
- Beskeni, R.D., Yousuf, M.I., Awang, M.M., Ranjha, A.N., 2011. The effect of prior knowledge in understanding chemistry concepts by senior secondary school students. International Journal of Academic Research, 3(2), 607-611
- Bidokht, M.H., 2011. Life-long Learners Through Problem-Based and Self Directed Learning, Procedia Computer Science 3, 1446-1453
- Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. and Wirth, R., 2000. CRISP-DM 1.0 : Step-by-Step Data Mining Guide, SPSS
- Das, M., Mpofu, D.F.S., Hasan, M.Y., Stewart, T.S., 2002. Student perceptions of tutor skill in problem-based learning tutorials. Medical Education, (36), 272-278
- Graf,S.,Bekele,R., 2006. Forming Heterogeneous Groups for Intelligent Collaborative Learning Systems with Ant Colony Optimization, In Proceedings of the 8th International Conference on Intelligent Tutoring Systems (ITS 2006), 217-226
- Hailikari,T., Katajavouri,N., Ylane,S.L., 2008. The Relevance of Prior Knowledge in Learning and Instructional Design, American Journal of Pharmaceutical,72(5) , 1-8
- Heaton, J., 2008. Introduction to Neural Networks for C, Second Edition, Heaton Research, St Louis
- Hermawan, 2006, Jaringan Syaraf Tiruan Teori dan Aplikasi, Penerbit Andi Yogyakarta
- Kardan,A.A.,Sadeghi,H.,Ghidary,S.S.,Sani,M.R.F., 2013. Prediction of Student Course Selection in Online Higher Education Institutes Using Neural Network, Computer & Education 65(2013), 1-11
- Karsoliya, S., 2012. Approximating Number of Hidden Layer Neurons in Multiple Hidden Layer BPNN Architecture, International Journal of Engineering Trends and Technology Vol.3 Issue.6, 714-717
- Khasei,M., Bijari,M., 2010. An Artificial Neural Network (p,d,q) Model for Timeseries Forecasting, Expert Systems with Applications 37(2010), 479-489
- Kovacic,Z.J., 2010. EarlyPrediction of Student Success : Mining Students Enrollment Data, Proceedings of Informing Science & IT Education Conference (InSITE) 2010, 647-665
- Laokietkul,J., Utakrit, N., Meesad, P., 2009. A Forecasting Model to Evaluate a Freshman's Ability to Succeed by Using Particular Full-Scaled Class Association Rules (PFSCARs), International Conference of Computer Science and Information Technology-Spring Conference, 40-44
- Larose,D.T., 2005. Discovering Knowledge in Data : An Introduction to Data Mining, Wiley-Interscience, Canada
- Liu,T.C., Lin,Y.C., Paas,F., 2014. Effects of Prior Knowledge on Learning from Different Compositions of Representations in a Mobile Learning Environment, Computer & Education, Vol.72, 328-338
- Moucary,C.E., Khair,M., Zakhem,W., 2006, Improving Student Performance Using Data Clustering and Neural Networks in Foreign-Language Based Higher Education, The Research Bulletin of Jordan ACM Vol II(III), 27-34
- Ogor, E.N., 2007. Student Academic Performance Monitoring and Evaluation Using Data Mining Techniques, Forth Congress of Electronics, Robotics and Automotive Mechanics, 354-359
- Oladokun,V.O.,Adebanjo,A.T.,Owaba,O.E.C.,2008. Predicting Students Academic Performance using Artificial Neural Networks : A Case Study of an Engineering Course,The Pacific Journal of Science and Technology Vol.9, 72-79
- Puspitaningrum, 2006, Pengantar Jaringan Saraf Tiruan, Penerbit Andi, Yogyakarta
- Samsudin dan Sunarti, 2006. Cooperative Learning : Heterogenous vs Homogenous Grouping, Apera Conference 2006, 1-6
- Siang, J.J., 2009. Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan MATLAB, Penerbit Andi, Yogyakarta
- Sugiono, Wu,M.H., Oraifige,I., 2012. Employ the Taguchi Method to Optimize BPNN’s Architectures in Car Body Design System, American Journal of Computational and Applied Mathematics 2012 2(4), 140-151
- Wood,D.F.,2003. ABC of Learning and Teaching in medicine : Problem based learning, BMJ, Volume 326, 328-330
Last update: 2021-03-01 19:41:02
Last update: 2021-03-01 19:41:03
-
Leaf feature extraction using glcm, moment invariant and shape morphology for indonesian medicinal plants recognition
Syahputra H.. Journal of Physics: Conference Series, 127 (1), 2019. doi: 10.1088/1742-6596/1317/1/012008 -
Optimization of artificial neural networks to improve accuracy of vocational competence selection of vocational school students using nguyen-widrow
Christyaditama I.G.P.. Journal of Physics: Conference Series, 127 (1), 2020. doi: 10.1088/1742-6596/1516/1/012052
Penulis yang mengirimkan naskah harus memahami dan menyetujui bahwa jika diterima untuk dipublikasikan, hak cipta dari artikel adalah milik JSINBIS dan Universitas Diponegoro sebagai penerbit jurnal.
Hak cipta (copyright) meliputi hak eksklusif untuk mereproduksi dan memberikan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm dan setiap reproduksi lain yang sejenis, serta terjemahan. Penulis mempunyai hak untuk hal-hal berikut:
- menggandakan seluruh atau sebagian materi yang dipublikasikan untuk digunakan oleh penulis sendiri sebagai bahan pengajaran di kelas atau bahan presentasi lisan dalam berbagai forum;
- menggunakan kembali sebagian atau keseluruhan materi sebagai bahan kompilasi bagi karya tulis penulis;
- membuat salinan dari bahan yang dipublikasikan untuk didistribusikan di lingkungan institusi tempat penulis bekerja.
JSINBIS dan Universitas Diponegoro serta Editor melakukan segala upaya untuk memastikan bahwa tidak ada data, pendapat atau pernyataan yang salah atau menyesatkan yang dipublikasikan di jurnal ini. Isi artikel yang diterbitkan di JSINBIS adalah tanggung jawab tunggal dan eksklusif dari masing-masing penulis.