skip to main content

Perbandingan Performa Cluster Model Algoritma K-Means Dalam Mengelompokkan Penerima Bantuan Program Keluarga Harapan

*warisa warisa  -  Universitas Darwan Ali, Indonesia
Nurahman Nurahman  -  Universitas Darwan Ali, Indonesia
Open Access Copyright (c) 2023 JSINBIS (Jurnal Sistem Informasi Bisnis)

Citation Format:
Abstract

Poverty has so far played a role as a problem faced by residents of the Mentawa Baru sub-district, Ketapang. The inability of this community is related to the need to meet education and health needs in social welfare. In assisting the grouping of beneficiary data is carried out using the K-Means algorithm. Apart from that, to increase performance, those who have gone through the first grouping process are then continued using feature selection in the decision tree tool. The algorithm used aims to classify PKH beneficiary data to help the government find out about the handling of the aid program in Mentawa Baru Ketapang sub-district. As for the results obtained from this study, namely, the accuracy of the initial clustering obtained a DBI value of -0.994 at K=8 while the second clustering value that had gone through feature selection with K=3 obtained a DBI value of -0.865. It is known from the performance testing of the comparison of the two clustering that the best performance value is found in the second cluster after going through feature selection.

Note: This article has supplementary file(s).

Fulltext View|Download |  Data Set
data pkh kec mentawa baru ketapang
Subject k-means, bantuan sosial, decision tree.
Type Data Set
  Download (108KB)    Indexing metadata
Keywords: Clustering; Data Mining; Davies Bouldin Index; Fuzzy C-Means

Article Metrics:

  1. Aprilawati brBarus, R., Tarigan, P., 2019. Implementasi data mining untuk menentukan keluarga yang layak mendapat kartu PKH (program keluarga harapan) dengan metode k-means clustering. Pelita Informatika: Informasi Dan Informatika 7(3)
  2. Dinata, R. K., Novriando, H., Hasdyna, N., Retno, S., 2020. Reduksi atribut menggunakan information gain untuk optimasi cluster algoritma k-means. Jurnal Edukasi dan Penelitian Informatika (JEPIN) 6(1). https://doi.org/10.26418/jp.v6i1.37606
  3. Haliim, W., 2016. Poverty reduction for extremely poor households of malang city by the implementation of program keluarga harapan. Jurnal Bina Praja 8(2). https://doi.org/10.21787/jbp.08.2016.331-340
  4. Ikhwan, A., Aslami, N., 2020. Implementasi data mining untuk manajemen bantuan sosial menggunakan algoritma k-means. Jurnal Teknologi Informasi 4(2), 208–217. https://doi.org/10.36294/jurti.v4i2.2103
  5. Kurniabudi, K., Harris, A., Mintaria, A. E., 2021. Komparasi information gain, gain ratio, cfs-bestfirst dan cfs-pso search terhadap performa deteksi anomali. Jurnal Media Informatika Budidarma, 5(1), 332. https://doi.org/10.30865/mib.v5i1.2258
  6. Fard, M. M., Thonet, T., Gaussier, E., 2020. Deep k-means: jointly clustering with k-means and learning representations. Pattern Recognition Letters 138, 185-192. https://doi.org/10.1016/j.patrec.2020.07.028
  7. Muhariya, A., Widada, B., Siswanti, S., 2021. Monitoring program keluarga harapan berbasis mobile GIS menggunakan k-means clustering. Techno.Com 20(4). https://doi.org/10.33633/tc.v20i4.4463
  8. Nasyuha, A. H., Zulham, Rusydi, I., 2022. Implementation of K-means algorithm in data analysis. Telkomnika (Telecommunication Computing Electronics and Control) 20(2). https://doi.org/10.12928/TELKOMNIKA.v20i2.21986
  9. Nurahman, N., Prihandoko, P., 2019. Perbandingan hasil analisis teknik data mining “metode decision tree, naive bayes, smo dan part” untuk mendiagnosa penyakit diabetes mellitus. Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi 4(1). https://doi.org/10.25139/inform.v4i1.1403
  10. Nurahman, N., Purwanto, A., Mulyanto, S., 2022. Klasterisasi sekolah menggunakan algoritma k-means berdasarkan fasilitas, pendidik, dan tenaga pendidik. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer 21(2), 337–350. https://doi.org/10.30812/matrik.v21i2.1411
  11. Putri, F. I., Damayanti, R., Kismiantini., 2022. Penerapan algoritma k-means untuk mengelompokan kecamatan di kabupaten gunungkidul berdasarkan program keluarga harapan. Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya 2, 408–418
  12. Putra, L. G. R., Anggrawan, A., 2021. Pengelompokan penerima bantuan sosial masyarakat dengan metode k-means. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer 21(1), 205-214. https://doi.org/10.30812/matrik.v21i1.1554
  13. Rahmawati, E., Kisworo, B., 2017., Peran pendamping dalam pemberdayaan masyarakat miskin melalui program keluarga harapan. Journal of Nonformal Education and Community Empowerment 1(2), 161–169. https://doi.org/10.15294/pls.v1i2.16271
  14. Riza, L. S., Rosdiyana, R. A., Wahyudin, A., Pérez, A. R., 2021. The k-means algorithm for generating sets of items in educational assessment. Indonesian Journal of Science and Technology 6(1). https://doi.org/10.17509/ijost.v6i1.31523
  15. Sa’Adah, U., Rochayani, M. Y., Astuti, A. B., 2020. Knowledge discovery from gene expression dataset using bagging lasso decision tree. Indonesian Journal of Electrical Engineering and Computer Science 21(2). https://doi.org/10.11591/ijeecs.v21.i2.pp1151-1159
  16. Safitri, E., Sumertajaya, I. M., Nur Aidi, M., 2019. TSClust approach using k-means method to forecast vegetable food commodities inflation in dki jakarta. International Journal of Scientific and Research Publications (IJSRP) 9(9). https://doi.org/10.29322/ijsrp.9.09.2019.p9357
  17. Said, A. A., Defit, S., Yunus, Y., 2021. Klasterisasi dana bantuan pada program keluarga harapan (PKH) menggunakan metode k-means. Jurnal Informatika Ekonomi Bisnis 3(2), 53-59
  18. Sari, D. P., Rosadi, D., Effendie, A. R., Danardono., 2019. K-means and bayesian networks to determine building damage levels. Telkomnika (Telecommunication Computing Electronics and Control) 17(2). https://doi.org/10.12928/TELKOMNIKA.V17I2.11756
  19. Swe, T. T., 2019. Analysis of tree based supervised learning algorithms on medical data. International Journal of Scientific and Research Publications (IJSRP) 9(4). https://doi.org/10.29322/ijsrp.9.04.2019.p8817
  20. Wijaya, Y. A., Kurniady, D. A., Setyanto, E., Tarihoran, W. S., Rusmana, D., Rahim, R., 2021. Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities. TEM Journal 10(3). https://doi.org/10.18421/TEM103-13

Last update:

  1. Sistem Pendukung Keputusan Berbasis K-Means untuk Evaluasi Keberhasilan Bisnis dan Nilai Perusahaan

    Sarmini Sarmini, Windiya Ma'arifah, Imam Tahyudin. Jurnal Sistem Informasi Bisnis, 14 (4), 2024. doi: 10.21456/vol14iss4pp363-374

Last update: 2024-11-20 09:40:44

No citation recorded.