skip to main content

Prediksi Penjualan Bisnis Rumah Properti Dengan Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA)

*Jefri Junifer Pangaribuan orcid scopus  -  Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Pelita Harapan, Medan, Indonesia 20112, Indonesia
Fanny Fanny  -  Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Pelita Harapan, Medan, Indonesia 20112, Indonesia
Okky Putra Barus orcid scopus  -  Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Pelita Harapan, Medan, Indonesia 20112, Indonesia
Romindo Romindo orcid scopus  -  Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Pelita Harapan, Medan, Indonesia 20112, Indonesia
Open Access Copyright (c) 2023 JSINBIS (Jurnal Sistem Informasi Bisnis)

Citation Format:
Abstract

Abstract - Sales forecasting plays an important role in determining the company's strategy in the future because it allows control of planning and availability of home production according to consumer needs. Forecasting accuracy provides significant advantages for companies, including production cost savings and avoidance of unnecessary costs. Without accurate forecasting, a company will face difficulties in determining the quantity of house production, which can have a negative impact on the company's financial balance if the houses do not sell. This research implements the Autoregressive Integrated Moving Average (ARIMA) model to forecast property business house sales with a high level of accuracy to support future business decisions. The results of the research on the application of the Autoregressive Integrated Moving Average algorithm show that the ARIMA model (9,1,10) provides good forecasting results measured by the lowest AIC and BIC values compared to the other 4 models, namely ARIMA (10,1,9); ARIMA(8,1,9); ARIMA(10,1,10); and ARIMA (12,1,12) accompanied by an evaluation of measuring the accuracy of the model using RMSE, MSE, and MAPE with each value of 0.281409; 0.079191 and MAPE of 3.4% so that it can be said that sales forecasting provides a good level of accuracy.

Abstrak - Prediksi penjualan memegang peran penting dalam menentukan strategi perusahaan di masa depan karena memungkinkan pengendalian perencanaan dan ketersediaan produksi rumah sesuai dengan kebutuhan konsumen. Keakuratan prediksi memberikan keuntungan signifikan bagi perusahaan, termasuk penghematan biaya produksi dan menghindari biaya yang tidak perlu. Kesulitan dalam menentukan jumlah produksi rumah tanpa prediksi yang tepat dapat berdampak negatif pada keseimbangan keuangan perusahaan jika rumah tidak terjual. Penelitian ini mengimplementasikan model Autoregressive Integrated Moving Average untuk melakukan prediksi penjualan bisnis rumah properti dengan tingkat akurasi yang baik untuk dapat mendukung keputusan bisnis kedepannya. Hasil penelitian pada pengaplikasian algoritma Autoregressive Integrated Moving Average menunjukkan bahwa model ARIMA (9,1,10) memberikan hasil nilai prediksi yang baik diukur dari nilai AIC dan BIC yang paling rendah dibandingkan 4 model lainnya yaitu ARIMA (10,1,9); ARIMA (8,1,9); ARIMA (10,1,10); dan ARIMA (12,1,12) disertai evaluasi pengukuran keakuratan model dengan menggunakan RMSE, MSE, dan MAPE dengan masing-masing nilai yaitu 0.281409; 0.079191 dan MAPE sebesar 3.4% sehingga dapat dikatakan prediksi penjualan memberikan tingkat akurasi yang baik.

Fulltext View|Download
Keywords: Data Mining; Autoregressive Integrated Moving Average; Forecasting; Sales

Article Metrics:

  1. Andryana, S., Rahman, B., & Gunaryati, A. (2023). Predicting Market Segments from Twitter Data Using ARIMA Time Series Analysis. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 9(1), 66–72. https://doi.org/10.33480/jitk.v9i1.4275
  2. Barus, O., & Wijaya, C. (2021). Implementasi Metode Neural Network Backpropagation dalam Prediksi Indeks Harga Saham Gabungan (IHSG). Seminar Nasional (SEMINASTIKA), 3(1), 79–85. https://doi.org/10.47002/seminastika.v3i1.252
  3. Br Bangun, R. H. (2017). Penerapan Autoregressive Integrated Moving Average (ARIMA) pada Peramalan Produksi Kedelai di Sumatera Utara. JURNAL AGRICA, 9(2), 90–100. https://doi.org/10.31289/agrica.v9i2.484
  4. Catur Putri, S. R., & Junaedi, L. (2022). Penerapan Metode Peramalan Autoregressive Integrated Moving Average Pada Sistem Informasi Pengendalian Persedian Bahan Baku. Jurnal Ilmu Komputer Dan Bisnis, 13(1), 164–173. https://doi.org/10.47927/jikb.v13i1.293
  5. Damanik, R. R., & Poernomo, M. H. (2023). Prediksi Pembelian Barang Pada Distributor Lampu Menggunakan Metode Apriori pada PT. XYZ. JDMIS: Journal of Data Mining and Information System, 1(1), 05–19. https://doi.org/10.54259/jdmis.v1i1.1500
  6. Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. In J. Han, M. Kamber, & J. Pei (Eds.), Data Mining (Third Edition) (Third Edition). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00001-0
  7. Hassyddiqy, H., & Hasdiana, H. (2023). Analisis Peramalan (Forecasting) Penjualan Dengan Metode ARIMA (Autoregressive Integrated Moving Average) Pada Huebee Indonesia. Data Sciences Indonesia (DSI), 2(2), 92–100. https://doi.org/10.47709/dsi.v2i2.2022
  8. Indarwati, T., Irawati, T., & Rimawati, E. (2018). Penggunaan Metode Linear Regression untuk Prediksi Penjualan Smartphone. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 6(2). https://doi.org/10.30646/tikomsin.v6i2.369
  9. Leonie, V., & Pangaribuan, J. J. (2020). Prediksi Video Performance Akun Youtube Buzzfeed Menggunakan Metode Naïve Bayes. Riset Dan E-Jurnal Manajemen Informatika Komputer, 5(1). https://doi.org/10.33395/remik.v4i1.10904
  10. Menculini, L., Marini, A., Proietti, M., Garinei, A., Bozza, A., Moretti, C., & Marconi, M. (2021). Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices. Forecasting, 3(3), 644–662. https://doi.org/10.3390/forecast3030040
  11. Pangaribuan, J. J., & Suharjito. (2014). Diagnosis of diabetes mellitus using extreme learning machine. 2014 International Conference on Information Technology Systems and Innovation, ICITSI 2014 - Proceedings, 33–38. https://doi.org/10.1109/ICITSI.2014.7048234
  12. Permatasari, C. I., Sutopo, W., & Hisjam, Muh. (2018). Sales Forecasting Newspaper with ARIMA: A Case Study. AIP Conference Proceedings, 030017. https://doi.org/10.1063/1.5024076
  13. Ramadhan, M. R., Tursina, T., & Novriando, H. (2020). Implementasi Fuzzy Time Series pada Prediksi Jumlah Penjualan Rumah. Jurnal Sistem Dan Teknologi Informasi (Justin), 8(4), 418. https://doi.org/10.26418/justin.v8i4.40186
  14. Ratningsih. (2017). Forecasting Penjualan Rumah Dengan Menggunakan Metode Trend Moment pada PT. Rumakita Prima Karsa. Perspektif, 15(1), 40–48
  15. Saputra, Moch. F. E., & Rizky, M. (2019). Peramalan Jumlah Kasus Infeksi Saluran Pernafasan Akut (ISPA) pada Laki-Laki Tahun 2019 dengan Metode ARIMA. Jurnal Biometrika Dan Kependudukan, 8(2), 138. https://doi.org/10.20473/jbk.v8i2.2019.138-145
  16. Swanson, D. A. (2015). On the Relationship among Values of the Same Summary Measure of Error when it is used across Multiple Characteristics at the Same Point in Time: An Examination of MALPE and MAPE
  17. Vercellis, C. (2009). Business Intelligence: Data Mining and Optimization for Decision Making (First Edition). John Wiley & Sons. https://books.google.co.id/books?id=Yl_yAn2bhZ0C
  18. Wulandari, R. A., & Gernowo, R. (2019). Metode Autoregressive Integrated Movingaverage (ARIMA) Dan Metode Adaptive Neuro Fuzzy Inference System (ANFIS) Dalam Analisis Curah Hujan. BERKALA FISIKA: Jurnal Fisika Teori, Eksperimen, Dan Fisika Aplikasi, 22(1), 41–48
  19. Žunić, E., Korjenić, K., Hodžić, K., & Đonko, D. (2020). Application of Facebook’s Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data. International Journal of Computer Science and Information Technology, 12(2), 23–36. https://doi.org/10.5121/ijcsit.2020.12203

Last update:

  1. Implementation of Support Vector Machine Method for Customer Segmentation

    Jefri Junifer Pangaribuan, Okky Putra Barus, Fiona Tjia, Romindo, Jusin, Ade Maulana. 2023 Eighth International Conference on Informatics and Computing (ICIC), 2023. doi: 10.1109/ICIC60109.2023.10382067

Last update: 2024-11-20 23:32:25

No citation recorded.