BibTex Citation Data :
@article{JSINBIS55749, author = {Jefri Pangaribuan and Fanny Fanny and Okky Barus and Romindo Romindo}, title = {Prediksi Penjualan Bisnis Rumah Properti Dengan Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA)}, journal = {Jurnal Sistem Informasi Bisnis}, volume = {13}, number = {2}, year = {2023}, keywords = {Data Mining; Autoregressive Integrated Moving Average; Forecasting; Sales}, abstract = { Abstract - Sales forecasting plays an important role in determining the company's strategy in the future because it allows control of planning and availability of home production according to consumer needs. Forecasting accuracy provides significant advantages for companies, including production cost savings and avoidance of unnecessary costs. Without accurate forecasting, a company will face difficulties in determining the quantity of house production, which can have a negative impact on the company's financial balance if the houses do not sell. This research implements the Autoregressive Integrated Moving Average (ARIMA) model to forecast property business house sales with a high level of accuracy to support future business decisions. The results of the research on the application of the Autoregressive Integrated Moving Average algorithm show that the ARIMA model (9,1,10) provides good forecasting results measured by the lowest AIC and BIC values compared to the other 4 models, namely ARIMA (10,1,9); ARIMA(8,1,9); ARIMA(10,1,10); and ARIMA (12,1,12) accompanied by an evaluation of measuring the accuracy of the model using RMSE, MSE, and MAPE with each value of 0.281409; 0.079191 and MAPE of 3.4% so that it can be said that sales forecasting provides a good level of accuracy . Abstrak - Prediksi penjualan memegang peran penting dalam menentukan strategi perusahaan di masa depan karena memungkinkan pengendalian perencanaan dan ketersediaan produksi rumah sesuai dengan kebutuhan konsumen. Keakuratan prediksi memberikan keuntungan signifikan bagi perusahaan, termasuk penghematan biaya produksi dan menghindari biaya yang tidak perlu. Kesulitan dalam menentukan jumlah produksi rumah tanpa prediksi yang tepat dapat berdampak negatif pada keseimbangan keuangan perusahaan jika rumah tidak terjual. Penelitian ini mengimplementasikan model Autoregressive Integrated Moving Average untuk melakukan prediksi penjualan bisnis rumah properti dengan tingkat akurasi yang baik untuk dapat mendukung keputusan bisnis kedepannya. Hasil penelitian pada pengaplikasian algoritma Autoregressive Integrated Moving Average menunjukkan bahwa model ARIMA (9,1,10) memberikan hasil nilai prediksi yang baik diukur dari nilai AIC dan BIC yang paling rendah dibandingkan 4 model lainnya yaitu ARIMA (10,1,9); ARIMA (8,1,9); ARIMA (10,1,10); dan ARIMA (12,1,12) disertai evaluasi pengukuran keakuratan model dengan menggunakan RMSE, MSE, dan MAPE dengan masing-masing nilai yaitu 0.281409; 0.079191 dan MAPE sebesar 3.4% sehingga dapat dikatakan prediksi penjualan memberikan tingkat akurasi yang baik . }, issn = {2502-2377}, pages = {154--161} doi = {10.21456/vol13iss2pp154-161}, url = {https://ejournal.undip.ac.id/index.php/jsinbis/article/view/55749} }
Refworks Citation Data :
Abstract - Sales forecasting plays an important role in determining the company's strategy in the future because it allows control of planning and availability of home production according to consumer needs. Forecasting accuracy provides significant advantages for companies, including production cost savings and avoidance of unnecessary costs. Without accurate forecasting, a company will face difficulties in determining the quantity of house production, which can have a negative impact on the company's financial balance if the houses do not sell. This research implements the Autoregressive Integrated Moving Average (ARIMA) model to forecast property business house sales with a high level of accuracy to support future business decisions. The results of the research on the application of the Autoregressive Integrated Moving Average algorithm show that the ARIMA model (9,1,10) provides good forecasting results measured by the lowest AIC and BIC values compared to the other 4 models, namely ARIMA (10,1,9); ARIMA(8,1,9); ARIMA(10,1,10); and ARIMA (12,1,12) accompanied by an evaluation of measuring the accuracy of the model using RMSE, MSE, and MAPE with each value of 0.281409; 0.079191 and MAPE of 3.4% so that it can be said that sales forecasting provides a good level of accuracy.
Abstrak - Prediksi penjualan memegang peran penting dalam menentukan strategi perusahaan di masa depan karena memungkinkan pengendalian perencanaan dan ketersediaan produksi rumah sesuai dengan kebutuhan konsumen. Keakuratan prediksi memberikan keuntungan signifikan bagi perusahaan, termasuk penghematan biaya produksi dan menghindari biaya yang tidak perlu. Kesulitan dalam menentukan jumlah produksi rumah tanpa prediksi yang tepat dapat berdampak negatif pada keseimbangan keuangan perusahaan jika rumah tidak terjual. Penelitian ini mengimplementasikan model Autoregressive Integrated Moving Average untuk melakukan prediksi penjualan bisnis rumah properti dengan tingkat akurasi yang baik untuk dapat mendukung keputusan bisnis kedepannya. Hasil penelitian pada pengaplikasian algoritma Autoregressive Integrated Moving Average menunjukkan bahwa model ARIMA (9,1,10) memberikan hasil nilai prediksi yang baik diukur dari nilai AIC dan BIC yang paling rendah dibandingkan 4 model lainnya yaitu ARIMA (10,1,9); ARIMA (8,1,9); ARIMA (10,1,10); dan ARIMA (12,1,12) disertai evaluasi pengukuran keakuratan model dengan menggunakan RMSE, MSE, dan MAPE dengan masing-masing nilai yaitu 0.281409; 0.079191 dan MAPE sebesar 3.4% sehingga dapat dikatakan prediksi penjualan memberikan tingkat akurasi yang baik.
Article Metrics:
Last update:
Implementation of Support Vector Machine Method for Customer Segmentation
Last update: 2024-11-20 23:32:25
Authors who submit the manuscripts to Journal JSINBIS must understand and agree that if the manuscript is accepted for publication, the copyright of the article belongs to JSINBIS and Diponegoro University as the journal publisher.
Copyright includes the exclusive right to reproduce and provide articles in all forms and media, including reprints, photographs, microfilm and any other similar reproductions, as well as translations. The author reserves the rights to the following:
JSINBIS and Diponegoro University and the Editors make every effort to ensure that no false or misleading data, opinions or statements are published in this journal. The content of articles published in JSINBIS is the sole and exclusive responsibility of the respective authors.
Copyright transfer agreement can be found here: [Copyright transfer agreement in doc] and [Copyright transfer agreement in pdf].
JSINBIS (Jurnal Sistem Informasi Bisnis) is published by the Magister of Information Systems, Post Graduate School Diponegoro University. It has e-ISSN: 2502-2377 dan p-ISSN: 2088-3587 . This is a National Journal accredited SINTA 2 by RISTEK DIKTI No. 48a/KPT/2017.
Journal JSINBIS which can be accessed online by http://ejournal.undip.ac.id/index.php/jsinbis is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats