skip to main content

Perbandingan Metode Machine Learning dalam Analisis Sentimen Komentar Pengguna Aplikasi InDriver pada Dataset Tidak Seimbang

*Sebastianus Adi Santoso Mola orcid publons  -  Universitas Nusa Cendana, Indonesia
Yufridon Charisma Luttu  -  Universitas Nusa Cendana, Indonesia
Dessy Nelci Rumlaklak  -  Universitas Nusa Cendana, Indonesia
Open Access Copyright (c) 2024 JSINBIS (Jurnal Sistem Informasi Bisnis)

Citation Format:
Abstract
The InDriver service is an online transportation service that has more flexibility in price and driver choice by consumers. Various comments from InDriver service users can affect people's views, so it is necessary to carry out a sentiment analysis of these comments. The purpose of this study was to identify positive, negative and neutral sentiments in user comments and to compare the performance of classification methods. The results of analysis with unbalanced datasets show that the Support Vector Machine (SVM) and Logistic Regression methods have the highest accuracy, reaching 89%. However, quality assessment is not only based on accuracy alone. In terms of the balance between precision and recall in the minority (neutral) class, the Random Forest method shows a more balanced performance with an F1-score of 55%. After balancing the dataset with the SMOTE method, performance increases significantly for the Naïve Bayes Classifier method, especially in the neutral class for recall and F1-score metrics of 57% and 52%. In conclusion, SVM and Logistic Regression have high accuracy, but to consider the balance of precision and recall in the minority class, the Random Forest method is recommended.
Fulltext View|Download
Keywords: Analsisi sentimen; InDriver;Pembelajaran Mesin;Dataset Tak Seimbang

Article Metrics:

  1. Adrian, M.R., Putra, M.P., Rafialdy, M.H., Rakhmawati, N.A., 2021. Perbandingan Metode Klasifikasi Random Forest dan SVM pada Analisis Sentimen PSBB. Jurnal Informatika Upgris, 7(1), 36-40. https://doi.org/10.26877/jiu.v7i1.7099
  2. Adriani, M., Asian, J., Nazief, B., Tahaghoghi, S.M.M., Williams, H.E., 2007. Stemming Indonesian: A confix-stripping approach. ACM Transactions on Asian Language Information Processing, 6(4), 1-33. https://doi.org/10.1145/1316457.1316459
  3. Anbari, M.Z., Sugiantoro, B., 2023. Studi Komparasi Metode Analisis Sentimen Naïve Bayes, SVM, dan Logistic Regression pada Piala Dunia 2022. Jurnal Media Informatika Budidarma, 7(2), 688-695. http://dx.doi.org/10.30865/mib.v7i2.5383
  4. Anjasmoros, M.T., Istiadi, Marisa, F., 2020. Analisis Sentimen Aplikasi Go-jek Menggunakan Metode SVM dan NBC (Studi kasus: Komentar Pada Play Store). Conference on Innovation and Application of Science and Technology (CIASTECH), 489-498. https://doi.org/10.31328/ciastech.v3i1.1905
  5. Djamaludin, M. A., Triayudi, A., Mardiani, E., 2022. Analisis Sentimen Tweet KRI Nanggala 402 di Twitter menggunakan Metode Naïve Bayes Classifier. Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 6(2), 161-166. https://doi.org/10.35870/jtik.v6i2.398
  6. Fitri, E., Yuliani, Y., Rosyida, S., Gata, W., 2020. Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest dan Support Vector Machine. Transformatika, 18(1), 71-80. http://dx.doi.org/10.26623/transformatika.v18i1.2317
  7. Herwijayanti, B., Ratnawati, D.E., Muflikhah, L., 2018. Klasifikasi Berita Online dengan menggunakan Pembobotan TF-IDF dan Cosine Similarity. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(1), 306-312
  8. Karja, 2019. Mengenal inDriver Pesaing Baru Gojek & Grab. Diakseses pada 18 Juli 2023, pada https://kumparan.com/karjaid/mengenal-indriver-pesaing-baru-gojek-and-grab-1sCtgTXz3Nn
  9. Liu, B., 2010. Sentiment analysis: A multi-faceted problem. IEEE intelligent systems, 25, 76-80
  10. Muttaqin, M.N., Kharisudin, I., 2021. Analisis Sentimen Aplikasi Gojek Menggunakan Support Vector Machine dan K Nearest Neighbor. UNNES Journal of Mathematics, 10(2), 22-27. https://doi.org/10.15294/ujm.v10i2.48474
  11. Novantika, A., Sugiman, S., 2022. Analisis Sentimen Ulasan Pengguna Aplikasi Video Conference Google Meet menggunakan Metode SVM dan Logistic Regression. PRISMA, Prosiding Seminar Nasional Matematika, 5, 808-813
  12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825-2830
  13. Priyanto, A., Ma’arif, M.R., 2018. Implementasi Web Scrapping dan Text Mining untuk Akuisisi dan Kategorisasi Informasi dari Internet (Studi Kasus: Tutorial Hidroponik). Indonesian Journal of Information Systems, 1(1), 25-33. https://doi.org/10.24002/ijis.v1i1.1664
  14. Putri, M.I., Kharisudin, I., 2022. Analisis Sentimen Pengguna Aplikasi Marketplace Tokopedia pada Situs Google Play Menggunakan Metode Support Vector Machine (SVM), Naïve Bayes, dan Logistic Regression. PRISMA, Prosiding Seminar Nasional Matematika, 5, 759-766
  15. Rezki, M., Kholifah, D.N., Faisal, M., Priyono, Suryadithia, R., 2020. Analisis Review Pengguna Google Meet dan Zoom Cloud Meeting Menggunakan Algoritma Naïve Bayes. Jurnal Infortech, 2(2), 264-270. https://doi.org/10.31294/infortech.v2i2.9286
  16. Rokhman, K.A., Berlilana, Arsi, P., 2021. Perbandingan Metode Support Vector Machine dan Decision Tree untuk Analisis Sentimen Review Komentar pada Aplikasi Transportasi Online. Journal of Information System Management (JOISM), 2(2), 1-7. https://doi.org/10.24076/joism.2021v3i1.341
  17. Seliya, N., Khoshgoftaar, T.M., Van Hulse, J., 2010. Predicting Faults in High Assurance Software. 2010 IEEE 12th International Symposium on High Assurance Systems Engineering, 26-34. https://doi.org/10.1109/HASE.2010.29
  18. Sianipar, G.J., 2019. Pengaruh Kualitas Pelayanan, Persepsi Harga dan Citra Merek Terhadap kepuasan Pelanggan Pengguna Jasa Transportasi Ojek Online (Studi pada Pelanggan GrabBike di Kota Medan). Jurnal Manajemen dan Bisnis, 19(2), 183-196
  19. Sitompul, K.P.J., Pratama, A.R., Baihaqi, K.A., 2023. Komparasi Algoritma Naive Bayes, Support Vector Machine, dan Logistic Regression pada Analisis Sentimen Pengguna Aplikasi Transportasi Online. Klik-Kumpulan Jurnal Ilmu Komputer, 10(1), 27-38. http://dx.doi.org/10.20527/klik.v10i1.616
  20. Sitorus, P.R., 2021. Analisis Sentimen Data Ulasan Aplikasi Indriver pada Situs Google Play Menggunakan Metode Naïve Bayes Classifier dan Support Vector Machine. PhD Thesis, Universitas Sumatera Utara. https://repositori.usu.ac.id/handle/123456789/46908
  21. Tuwanakotta, J.L., Tanaamah, A.R., 2022. Evaluation of Usability Quality Between InDriver and Maxim Applications Using Usability Scale (SUS) and Usability Testing Methods. Sistemasi: Jurnal Sistem Informasi, 11(3), 630-645. https://doi.org/10.32520/stmsi.v11i3.2001
  22. Wijaya, K.D.Y., Karyawati, A.A.I.N.E., 2020. The Effects of Different Kernels in SVM Sentiment Analysis on Mass Social Distancing. Jurnal Elektronik Ilmu Komputer Udayana, 9(2), 161-168. https://doi.org/10.24843/JLK.2020.v09.i02.p01
  23. Wijayanto, H., 2015. Klasifikasi Batik Menggunakan Metode K-Nearest Neighbour Berdasarkan Gray Level Co-Occurrence Matrices (GLCM). Seminar Nasional Aplikasi Teknologi Informasi. Presented at the Seminar Nasional Aplikasi Teknologi Informasi, Yogyakarta

Last update:

No citation recorded.

Last update: 2025-01-13 17:45:02

No citation recorded.