Perbandingan Kinerja Jaringan Saraf Tiruan Model Backpropagation dan General Regression Neural Network Untuk Mengidentifikasi Jenis Daging Sapi
Subject | |
Type | Research Instrument |
Download (630KB) Indexing metadata |

The research on image identification has been conducted to identify the type of beef. The research is aimed to compare the performance of artificial neural network of backpropagation and general regression neural network model in identifying the type of meat. Image management is processed by counting R, G and B value in every meat image, and normalization process is then carried out by obtaining R, G, and B index value which is then converted from RGB model to HSI model to obtain the value of hue, saturation and intensity. The resulting value of image processing will be used as input parameter of training and validation programs. The performance of G RNN model is more accurate than the backpropagation with accuracy ratio by 51%.
Keyword: Identification; Backpropagation; GRNN
Note: This article has supplementary file(s).
Article Metrics:
Last update: 2021-03-04 05:06:11
Last update: 2021-03-04 05:06:12
Penulis yang mengirimkan naskah harus memahami dan menyetujui bahwa jika diterima untuk dipublikasikan, hak cipta dari artikel adalah milik JSINBIS dan Universitas Diponegoro sebagai penerbit jurnal.
Hak cipta (copyright) meliputi hak eksklusif untuk mereproduksi dan memberikan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm dan setiap reproduksi lain yang sejenis, serta terjemahan. Penulis mempunyai hak untuk hal-hal berikut:
- menggandakan seluruh atau sebagian materi yang dipublikasikan untuk digunakan oleh penulis sendiri sebagai bahan pengajaran di kelas atau bahan presentasi lisan dalam berbagai forum;
- menggunakan kembali sebagian atau keseluruhan materi sebagai bahan kompilasi bagi karya tulis penulis;
- membuat salinan dari bahan yang dipublikasikan untuk didistribusikan di lingkungan institusi tempat penulis bekerja.
JSINBIS dan Universitas Diponegoro serta Editor melakukan segala upaya untuk memastikan bahwa tidak ada data, pendapat atau pernyataan yang salah atau menyesatkan yang dipublikasikan di jurnal ini. Isi artikel yang diterbitkan di JSINBIS adalah tanggung jawab tunggal dan eksklusif dari masing-masing penulis.