Pengenalan Wajah dengan Matriks Kookurensi Aras Keabuan dan Jaringan Syaraf Tiruan Probabilistik

Sistem pengenalan wajah merupakan pengembangan metode dasar sistem autentifikasi dengan menggunakan karakteristik alami wajah manusia sebagai dasarnya. Proses pengenalan citra wajah ini melalui beberapa tahap yaitu tahap pelatihan dan tahap pengujian. Pada tahap pengujian dilakukan secara langsung dan tidak langsung. Secara tidak langsung data uji bersumber dari sekumpulan citra wajah yang sudah dipilih, sedangkan secara langsung citra wajah bersumber dari kamera. Pengenalan citra wajah manusia menggunakan penggabungan antara metode GLCM dan PNN. Tahap prapengolahan dengan merubah RGB ke dalam aras keabuan dengan metode centroid sebagai proses segmentasi citra wajah. Faktor pengenalan wajah yang diuji meliputi pencahayaan, jarak, sudut serta posisi. Pada GLCM menggunakan metode statistik dan analisis tekstur orde kedua karena merepresentasikan tekstur citra dalam parameter energi, korelasi, homogenitas dan kontras. Sedangkan PNN digunakan untuk pembentukan basisdata yang disimpan dalam jaringan untuk proses membandingkan hasil keluaran yang berupa data matrik hasil dari GLCM. Pada penelitian ini digunakan citra wajah sebagai basisdata dengan sampel sebanyak 10 orang dan 5 posisi wajah, 2 jarak pengambilan gambar citra wajah, serta 3 kategori pencahayaan. Proses pengujian menghasilkan tingkat pengenalan secara langsung sebesar 92%, sedangkan pengujian secara tidak langsung sebesar 93,33%.
Kata kunci: GLCM; PNN; Centroid; Prapengolahan
Article Metrics:
Last update: 2021-02-25 02:07:33
Last update: 2021-02-25 02:07:35
-
Breast cancer detection in mammogram images exploiting GLCM, GA features and SVM algorithms
Palantei E.. Journal of Telecommunication, Electronic and Computer Engineering, 9 (2), 2017.
Penulis yang mengirimkan naskah harus memahami dan menyetujui bahwa jika diterima untuk dipublikasikan, hak cipta dari artikel adalah milik JSINBIS dan Universitas Diponegoro sebagai penerbit jurnal.
Hak cipta (copyright) meliputi hak eksklusif untuk mereproduksi dan memberikan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm dan setiap reproduksi lain yang sejenis, serta terjemahan. Penulis mempunyai hak untuk hal-hal berikut:
- menggandakan seluruh atau sebagian materi yang dipublikasikan untuk digunakan oleh penulis sendiri sebagai bahan pengajaran di kelas atau bahan presentasi lisan dalam berbagai forum;
- menggunakan kembali sebagian atau keseluruhan materi sebagai bahan kompilasi bagi karya tulis penulis;
- membuat salinan dari bahan yang dipublikasikan untuk didistribusikan di lingkungan institusi tempat penulis bekerja.
JSINBIS dan Universitas Diponegoro serta Editor melakukan segala upaya untuk memastikan bahwa tidak ada data, pendapat atau pernyataan yang salah atau menyesatkan yang dipublikasikan di jurnal ini. Isi artikel yang diterbitkan di JSINBIS adalah tanggung jawab tunggal dan eksklusif dari masing-masing penulis.