skip to main content

Improving Fake News Detection Accuracy with Lexicon-based Approach and LSTM through Text Preprocessing

*Chamdan Mashuri  -  Information System, Faculty of Information Technology, Hasyim Asy'ari University Tebuireng Jombang, Indonesia
Edwin Hari Agus Prastyo  -  Faculty of Information Technology, Informatics Engineering Study Programme, Hayim Asy'ari University, Jl. Raya Tebuireng No. 1, Tebuireng, Jombang, Indonesia , Indonesia
Fajar Rohman Hariri  -  Informatics, Faculty of Science and Technology, State Islamic University of Malang, Indonesia
Open Access Copyright (c) 2025 Jurnal Sistem Informasi Bisnis

Citation Format:
Abstract

Fake news detection has become a critical issue in the digital era, especially with the rapid growth of social media and online platforms. This research aims to enhance the accuracy of detecting fake news in Indonesian by developing a model using lexicon-based and Long Short-Term Memory (LSTM) approaches. The study integrates sentiment analysis with lexicon-based scoring to identify key features in news articles, while LSTM is employed to analyze sequential patterns in the data. The methods were tested on a dataset consisting of both hoax and non-hoax news collected from reliable sources. The results indicate that the hybrid model significantly improves the detection accuracy, achieving an impressive accuracy rate of 99%. This research demonstrates the potential of combining lexicon-based and LSTM approaches to overcome challenges in detecting fake news, especially in low-resource languages like Indonesian. The findings contribute to advancing the development of reliable and efficient systems for combating misinformation in the digital age.

Fulltext View|Download
Keywords: fake news detection; lexicon-based; LSTM; accuracy; algorithm.

Article Metrics:

  1. Ade Gohan, M., Andayan, M., Naufal, M., Masliana, M., 2021. Penyuluhan Penyebaran Covid-19 Dengan Pendekatan Participatory Action Research Dalam Menanggapi Berita Hoax Pada Media Sosial. J. IPTEK Bagi Masy. J-IbM 1, 66–73. https://doi.org/10.55537/jibm.v1i2.10
  2. Al-Shabi, M., 2020. Evaluating the performance of the most important Lexicons used to Sentiment analysis and opinions Mining
  3. Baidawi, I., 2021. Peranan Pemerintah Kabupaten Situbondo Dalam Menanggulangi Informasi Hoax. Nusant. J. Islam. Stud. https://doi.org/10.54471/njis.2021.2.1.18-24
  4. Balshetwar, S.V., Rs, A., R, D.J., 2023. Fake news detection in social media based on sentiment analysis using classifier techniques. Multimed. Tools Appl. 82, 35781–35811. https://doi.org/10.1007/s11042-023-14883-3
  5. Hutama, L.B., Suhartono, D., 2022. Indonesian Hoax News Classification With Multilingual Transformer Model and BERTopic. Informatica. https://doi.org/10.31449/inf.v46i8.4336
  6. Khanifah, A., Fauzi, A.M., 2022. DAMPAK BERITA HOAX TENTANG COVID-19 TERHADAP PELAKSANAAN PROTOKOL KESEHATAN OLEH MASYARAKAT: (Studi Kasus Group Whatsapp Keluarga). J. Ilm. Din. Sos. 6, 250–267. https://doi.org/10.38043/jids.v6i2.3485
  7. Kominfo, P., n.d. Siaran Pers No.150/HM/KOMINFO/07/2023 tentang Juni 2023, Kominfo Identifikasi 117 Konten Hoaks
  8. Kurniawan, A.A., Mustikasari, M., 2021. Implementasi Deep Learning Menggunakan Metode CNN dan LSTM untuk Menentukan Berita Palsu dalam Bahasa Indonesia. J. Inform. Univ. Pamulang 5, 544. https://doi.org/10.32493/informatika.v5i4.6760
  9. Ni Made Ayu Juli Astari, Divayana, D.G.H., Indrawan, G., 2020. Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier. J. Sist. Dan Inform. Jsi. https://doi.org/10.30864/jsi.v15i1.332
  10. P, U., Naik, A., Gurav, S., Kumar, A., S R, C., B S, M., 2023. Fake News Detection Using Neural Network, in: 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS). Presented at the 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS), IEEE, Raichur, India, pp. 01–05. https://doi.org/10.1109/ICICACS57338.2023.10100208
  11. Pardede, J., Ibrahim, R.G., 2020. Implementasi Long Short-Term Memory untuk Identifikasi Berita Hoax Berbahasa Inggris pada Media Sosial. J. Comput. Sci. Inform. Eng. J-Cosine 4, 179–187. https://doi.org/10.29303/jcosine.v4i2.361
  12. Prasetya, F., Ferdiansyah, F., 2022. Analisis Data Mining Klasifikasi Berita Hoax COVID 19 Menggunakan Algoritma Naive Bayes. J. Sist. Komput. Dan Inform. JSON 4, 132. https://doi.org/10.30865/json.v4i1.4852
  13. Pulungan, H.R., 2022. Perspektif Masyarakat Muslim Angkola Dalam Menyikapi Hoax Melalui Pembelajaran Proses Mental Kognitif. FORUM Paedagog. 13, 1–23. https://doi.org/10.24952/paedagogik.v13i1.4982
  14. Saraswati, R., Nugroho, A.W., Pasaribu, R., 2022. Anti Hoax Movement For Students: Skills Training, Whole Person Education And Technology In Semarang City. SISFORMA 9, 9–17. https://doi.org/10.24167/sisforma.v9i1.3106
  15. Sudrajat, A., Wulandari, R.R., Syafwan, E., 2022. Indonesian Language Hoax News Classification Basedn on Naïve Bayes. J. Appl. Intell. Syst. 7, 70–79. https://doi.org/10.33633/jais.v7i1.5985
  16. Tama, F.R., Sibaroni, Y., 2023. Fake News (Hoaxes) Detection on Twitter Social Media Content through Convolutional Neural Network (CNN) Method. JINAV J. Inf. Vis. 4, 70–78. https://doi.org/10.35877/454RI.jinav1525
  17. Yunanto, R., Purfini, A.P., Prabuwisesa, A., 2021a. Survei Literatur: Deteksi Berita Palsu Menggunakan Pendekatan Deep Learning. J. Manaj. Inform. Jamika. https://doi.org/10.34010/jamika.v11i2.5362
  18. Yunanto, R., Purfini, A.P., Prabuwisesa, A., 2021b. Survei Literatur: Deteksi Berita Palsu Menggunakan Pendekatan Deep Learning. J. Manaj. Inform. JAMIKA 11, 118–130. https://doi.org/10.34010/jamika.v11i2.5362
  19. Zhang, J., Dong, B., Yu, P.S., 2020. FakeDetector: Effective Fake News Detection With Deep Diffusive Neural Network. https://doi.org/10.1109/icde48307.2020.00180

Last update:

No citation recorded.

Last update: 2025-06-29 15:04:08

No citation recorded.