PERBANDINGAN ESTIMATOR REGRESI NONPARAMETRIK MENGGUNAKAN METODE FOURIER DAN METODE WAVELET

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 25-01-2012
Published: 25-01-2012
Section: Articles
Fulltext PDF Tell your colleagues Email the author


Let  be independent observation data and follows a model  Yi = f(Xi) + eI ,

 i =1,2,...,n  with f is an unknown regression function and ei are independent random variables with mean 0 and variance s2. The function f could be estimated by parametric and nonparametric appro-aches. In nonparametric approach, the function f is assumed to be a smooth function or quadratic integrable function. If f belongs to the Hilbert space L2(R) then the function f could be estimated by estimator of orthogonal series, especially by Fourier series estimator. Another estimator of orthogonal series  which could be use  to estimate f is wavelet estimator. Wavelet estimator is an extention of Fourier series estimator  but it is more effective than the Fourier series estimator because the its IMSE converges to zero quicker than the Fourier series estimator.

  1. Suparti Suparti 

    JURNAL MATEMATIKA terbit tiga kali setahun (April, Agustus, Desember), menerima artikel ilmiah dalam bidang matematika, statistika, dan ilmu komputer. Terbit sejak tahun 1998 dengan nama JURNAL MATEMATIKA DAN KOMPUTER dengan warna dasar sampul kuning dan warna tulisan hitam. Mulai tahun 2005 nama jurnal berubah menjadi JURNAL MATEMATIKA dengan warna dasar sampul kuning gading dan warna tulisan merah maron.