BibTex Citation Data :
@article{JM708, author = {Kushartantya kushartantya and Awalina kurniastuti}, title = {EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI}, journal = {MATEMATIKA}, volume = {4}, number = {3}, year = {2010}, keywords = {}, abstract = { Penelitian ini bertujuan menyelidiki efek diskretisasi terhadap akurasi dari solusi model rambatan panas tanpa suku konveksi menggunakan diskretisasi perubah ruang metode Galerkin Semi Diskret. Dalam penelitian ini sebagai indicator akurasi diambil nilai error (error maksimum). Untuk menentukan akurasi tersebut sebagai pembanding digunakan diskretisasi perubah ruang metode Beda Hingga. Permasalahan yang akan diteliti disini adalah bagaimana mentransformasikan model rambatan panas tanpa suku konveksi kebentuk sistem persamaan diferensial ordiner dengan melakukan diskretisasi pada perubah ruang dengan menggunakan metode Galerkin Semi Diskret. Selanjutnya system persamaan diferensial ordiner yang diperoleh dari diskretisasi tersebut diintegrasikan dengan menggunakan metode Runge Kutta Implisit Diagonal (RKID). Error diperoleh dari selisih solusi persamaan diferensial ordiner dengan solusi sebenarnya yang dihitung pada titik yang sesuai. Hasil pengukuran menunjukkan bahwa solusi model rambatan panas tanpa suku konveksi yang diperoleh berdasarkan diskretisasi, perubah ruang menggunakan metode Galerkin Semi Diskret relatif lebih akurat dibandingkan dengan solusi yang diperoleh dengan diskretisasi perubah ruang menggunakan metode Beda Hingga. }, url = {https://ejournal.undip.ac.id/index.php/matematika/article/view/708} }
Refworks Citation Data :
Penelitian ini bertujuan menyelidiki efek diskretisasi terhadap akurasi dari solusi model rambatan panas tanpa suku konveksi menggunakan diskretisasi perubah ruang metode Galerkin Semi Diskret. Dalam penelitian ini sebagai indicator akurasi diambil nilai error (error maksimum). Untuk menentukan akurasi tersebut sebagai pembanding digunakan diskretisasi perubah ruang metode Beda Hingga. Permasalahan yang akan diteliti disini adalah bagaimana mentransformasikan model rambatan panas tanpa suku konveksi kebentuk sistem persamaan diferensial ordiner dengan melakukan diskretisasi pada perubah ruang dengan menggunakan metode Galerkin Semi Diskret. Selanjutnya system persamaan diferensial ordiner yang diperoleh dari diskretisasi tersebut diintegrasikan dengan menggunakan metode Runge Kutta Implisit Diagonal (RKID). Error diperoleh dari selisih solusi persamaan diferensial ordiner dengan solusi sebenarnya yang dihitung pada titik yang sesuai. Hasil pengukuran menunjukkan bahwa solusi model rambatan panas tanpa suku konveksi yang diperoleh berdasarkan diskretisasi, perubah ruang menggunakan metode Galerkin Semi Diskret relatif lebih akurat dibandingkan dengan solusi yang diperoleh dengan diskretisasi perubah ruang menggunakan metode Beda Hingga.
Last update:
Last update: 2024-11-22 10:02:00