skip to main content


*Baiq Nurul Haqiqi  -  Jurusan Komputasi Statistik, Sekolah Tinggi Ilmu Statistik (STIS), Indonesia
Robert Kurniawan  -  Jurusan Komputasi Statistik, Sekolah Tinggi Ilmu Statistik (STIS), Indonesia

Citation Format:

Fuzzy C-Means (FCM) is one of the most frequently used clustering method. However FCM has some disadvantages such as number of clusters to be prespecified and partition matrix to be randomly initiated which makes clustering result becomes inconsistent. Subtractive Clustering (SC) is an alternative method that can be used when number of clusters are unknown. Moreover, SC produces consistent clustering result. A hybrid method of FCM and SC called Subtractive Fuzzy CMeans (SFCM) is proposed to overcome FCM’s disadvantages using SC. Both SFCM and FCM are implemented to cluster generated data and the result of the two methods are compared. The experiment shows that generally SFCM produces better clustering result than FCM based on six validity indices.

Keywords : Clustering, Fuzzy C-Means, Subtractive Clustering, Subractive Fuzzy C-Means

Fulltext View|Download

Article Metrics:

Last update:

  1. Analysing Temporal Hotspot Occurance over Sumatera and Kalimantan

    Arie Vatresia, Ferzha Putra Utama, Ajie Dwi Erza, Hendri Gunawan, Yudi Setiawan, Rendra Regen Rais. 2022 International Conference on Informatics Electrical and Electronics (ICIEE), 2022. doi: 10.1109/ICIEE55596.2022.10010139
  2. Mathematics and Science Education International Seminar 2021 (MASEIS 2021)

    Kasrina, Alif Yanuar Zukmadini, Yunidar, Anggun Diyan Nurhasanah, Hafiza Imam Haidayatullah, Tri Irama Setiadi. Advances in Social Science, Education and Humanities Research, 718 , 2023. doi: 10.2991/978-2-38476-012-1_19

Last update: 2024-02-25 16:26:14

  1. Robustness of classical fuzzy C-means (FCM)

    Nasution B.. 2018 International Conference on Information and Communications Technology, ICOIACT 2018, 127 , 2018. doi: 10.1109/ICOIACT.2018.8350729