BibTex Citation Data :
@article{Medstat13130, author = {Riza Ramadhan and Robert Kurniawan}, title = {PEMODELAN DATA KEMATIAN BAYI DENGAN GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL REGRESSION}, journal = {MEDIA STATISTIKA}, volume = {9}, number = {2}, year = {2016}, keywords = {}, abstract = { Overdispersion phenomenon and the influence of location or spatial aspect on data are handled using Binomial Geographically Weighted Regression (GWNBR). GWNBR is the best solution to form a regression analysis that is specific to each observation’s location. The analysis resulted in parameter value which different from one observation to another between location. The Weighting Matrix Selection is done before doing The GWNBR modeling. Different weighting will resulted in different model. Thus this study aims to investigate the best fit model using infant mortality data that is produced by some kind of weighting such as fixed kernel Gaussian, fixed kernel Bisquare, adaptive kernel Gaussian and adaptive kernal Bisquare in GWNBR modeling. This region study covers all the districts/municipalities in Java because the number of observations are more numerous and have more diverse characteristics. The study shows that out of four kernel functions, infant mortality data in Java2012, the best fit model is produced by fixed kernel Gaussian function. Besides that GWNBR with fixed kernel Gaussian also shows better result than the poisson regression and negative binomial regression for data modeling on infant mortality based on the value of AIC and Deviance. Keywords : GWNBR, inf a nt mortality, fixed gaussian, fixed bisquare, adaptive gaussian, adaptive bisquare . }, issn = {2477-0647}, pages = {95--106} doi = {10.14710/medstat.9.2.95-106}, url = {https://ejournal.undip.ac.id/index.php/media_statistika/article/view/13130} }
Refworks Citation Data :
Overdispersion phenomenon and the influence of location or spatial aspect on data are handled using Binomial Geographically Weighted Regression (GWNBR). GWNBR is the best solution to form a regression analysis that is specific to each observation’s location. The analysis resulted in parameter value which different from one observation to another between location. The Weighting Matrix Selection is done before doing The GWNBR modeling. Different weighting will resulted in different model. Thus this study aims to investigate the best fit model using infant mortality data that is produced by some kind of weighting such as fixed kernel Gaussian, fixed kernel Bisquare, adaptive kernel Gaussian and adaptive kernal Bisquare in GWNBR modeling. This region study covers all the districts/municipalities in Java because the number of observations are more numerous and have more diverse characteristics. The study shows that out of four kernel functions, infant mortality data in Java2012, the best fit model is produced by fixed kernel Gaussian function. Besides that GWNBR with fixed kernel Gaussian also shows better result than the poisson regression and negative binomial regression for data modeling on infant mortality based on the value of AIC and Deviance.
Keywords: GWNBR, infant mortality, fixed gaussian, fixed bisquare, adaptive gaussian, adaptive bisquare.
Article Metrics:
Last update:
Last update: 2024-12-24 22:16:52
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief) Editorial Office of Media StatistikaDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: maruddani@live.undip.ac.id
Media Statistika
Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro
Gedung F Lantai 3, Jalan Prof Jacub Rais, Kampus Tembalang
Semarang 50275
Indexing: