skip to main content

PEMILIHAN VARIABEL PADA MODEL GEOGRAPHICALLY WEIGHTED REGRESSION


Citation Format:
Abstract

Regression analysis is a statistical analysis that aims to model the relationship between response variable with some predictor variables. Geographically Weighted Regression (GWR) is statistical method used for analyzed the spatial data in local form of regression. One of the problems in GWR is how to choose the significant variables. The number of predictor variables will allow the violation of assumptions about the absence of multicollinearity in the data. Therefore, this needs a method to reduce some of the predictor variables which not significant to the response variable. This paper will discuss how to select significant variables by stepwise method. This method is a combination of forward selection method and the backward elimination method.

Keywords:   Geographically Weighted Regression, Backward Elimination, Forward Selection, Stepwise Method

Fulltext View|Download

Article Metrics:

Last update:

  1. Estimation of Error Variance-Covariance Parameters Using Multivariate Geographically Weighted Regression Model

    Sri Harini. Abstract and Applied Analysis, 2020 , 2020. doi: 10.1155/2020/4657151
  2. Robust geographically weighted regression with least absolute deviation method in case of poverty in Java Island

    Rawyanil ‘Afifah, Yudhie Andriyana, I. G. N. Mindra Jaya. AIP Conference Proceedings, 1827 , 2017. doi: 10.1063/1.4979439
  3. Identification of Socio-economic Activities as Urban Growth based on Nighttime Light Data (Study on Kendal District - Indonesia)

    Muhammad Iqbal Habibie, Nugroho Purwono. 2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), 2022. doi: 10.1109/AGERS56232.2022.10093456
  4. Spatial modelling of malaria cases associated with environmental factors in South Sumatra, Indonesia

    Hamzah Hasyim, Afi Nursafingi, Ubydul Haque, Doreen Montag, David A. Groneberg, Meghnath Dhimal, Ulrich Kuch, Ruth Müller. Malaria Journal, 17 (1), 2018. doi: 10.1186/s12936-018-2230-8
  5. Construction of a geographically weighted nonparametric regression model fit test

    Lilis Laome, I Nyoman Budiantara, Vita Ratnasari. MethodsX, 12 , 2024. doi: 10.1016/j.mex.2023.102536

Last update: 2024-12-20 11:41:25

  1. Spatial modelling of malaria cases associated with environmental factors in South Sumatra, Indonesia

    Hamzah Hasyim, Afi Nursafingi, Ubydul Haque, Doreen Montag, David A. Groneberg, Meghnath Dhimal, Ulrich Kuch, Ruth Müller. Malaria Journal, 17 (1), 2018. doi: 10.1186/s12936-018-2230-8