skip to main content

STRUCTURAL EQUATION MODELING WITH GENERALIZED STRUCTURED COMPONENT ANALYSIS ON THE RELATIONSHIP BETWEEN RENUMERATION AND MOTIVATION ON EMPLOYEE PERFORMANCE AT UIN SUNAN KALIJAGA YOGYAKARTA

*Epha Diana Supandi scopus  -  Mathematics Study Program, State Islamic University Sunan Kalijaga, Indonesia
Open Access Copyright (c) 2020 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Structural equation modeling (SEM) is a multivariate statistical analysis technique that is used to analyze the structural relationships between observed variables and latent constructs. SEM has several methods one of which is Generalized Structured Component Analysis (GSCA). An empirical application concerning the relationship between renumeration and work motivation on employee performance is presented to illustrate the usefulness of the GSCA method. Data were collected by a questionnaire distributed to lecturers and staffs at UIN Sunan Kalijaga Yogyakarta. The result showed that the remuneration variable had a significant and positive impact on work motivation. Also, the work motivation variable had a significant and positive effect on employee performance.
Fulltext View|Download
Keywords: Generalized Structured Component Analysis; Remuneration; Structural Equation Modeling

Article Metrics:

  1. Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: John Wiley & Sons
  2. Ghozali, I., & Kusumadewi, K. A. (2013). Generalized Structured Component Analysis (GeSCA) Model SEM Berbasis Komponen. Semarang: Badan penerbit Universitas Diponegoro. Semarang
  3. Hwang, H., & Takane, Y. (2004). Generalized Structured Component Analysis. Psychometrika, 69, 81–99. https://doi.org/10.1007/S11336-009-9119-Y
  4. Hwang, H., & Takane, Y. (2014). Generalized Structured Component Analysis: A Component Based Approach to Structural Equation Modeling. Chapman and Hall/CRC
  5. Hwang, H., Takane, Y., & Jung, K. (2017). Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error. Frontiers in Psychology, 8(DEC). https://doi.org/10.3389/fpsyg.2017.02137
  6. Kim, S., Cardwell, R., & Hwang, H. (2017). Using R Package Gesca for Generalized Structured Component Analysis. Behaviourmetrika, 44, 3–23
  7. Kurniawan, M. I. (2017). Penerapan Structural Equation Modeling - Generalized Structured Component Analysis (SEM-GSCA) pada Kecerdasan Majemuk SMAN 1 Rumpin-Bogor. IPB Bogor
  8. Lohmöller, J.-B. (1989). Latent Variable Path Modeling with Partial Least Squares. In Latent Variable Path Modeling with Partial Least Squares. Physica-Verlag. https://doi.org/10.1007/978-3-642-52512-4
  9. Mangkunegara, A. P. (2005). Manajemen Sumber Daya Manusia Perusahaan. Bandung: PT Remaja Rosda
  10. Raykov, T., & Marcoulides, G. A. (2000). A First Course in Structural Equation Modeling. New Jersey: Lawrence Erlbaum Associates, Inc
  11. Sarjono, H., & Julianita, W. (2015). Structural Equation Modeling (SEM) Sebuah Pengantar, Aplikasi untuk Penelitian Bisnis. Jakarta: Salemba Empat
  12. Senjani, Y. P. (2017). Analisis Implementasi Remunerasi Blu (Studi Kasus Pada UIN Sunan Kalijaga Yogyakarta). EkBis: Jurnal Ekonomi Dan Bisnis, 1(1), 12–33. https://doi.org/10.14421/ekbis.2017.1.1.993
  13. Sopiah. (2008). Perilaku Organisasional. Yogyakarta: Andi Offset
  14. Susanti, N. I., Tirta, I. M., & Dewi, S. (2014). Approach Generalized Structured Component Analysis ( GSCA ) Method for Structural Equation Modeling Unidimensional. Prosiding Seminar Nasional Matematika, (November), 94–103
  15. Wold, H. (1985). Partial Least Squares. New York: John Wiley

Last update:

No citation recorded.

Last update: 2024-02-22 21:36:38

No citation recorded.