skip to main content

PEMODELAN INFLASI BERDASARKAN HARGA-HARGA PANGAN MENGGUNAKAN SPLINE MULTIVARIABEL

*Alan Prahutama  -  Jurusan Statistika, FSM, Universitas Diponegoro, Indonesia
Tiani Wahyu Utama  -  Jurusan Statistika, Universitas Muhammadiyah Semarang, Indonesia
Rezzy Eko Caraka  -  Jurusan Statistika, FSM, Universitas Diponegoro, Indonesia
Dede Zumrohtuliyosi  -  Jurusan Statistika, FSM, Universitas Diponegoro, Indonesia

Citation Format:
Abstract

Inflation is defined as a sustained increase in the general level of price for goods and services. Some of the events that led to inflation in Indonesia is rising fuel prices, rising prices of meat and chili. Inflation has negative impact, because decreased purchasing power.  So that the inflation model is needed. Modeling inflation can be use regression models. The approach can be performed with nonparametric regression, one of method of nonparametric regression is spline method. In this case, use three predictors to modeling inflation using spline multivariable. The predictors are price of rice, price of chicken, and price of chili. Obtained multivariable spline models with R-square of 93.94% with optimal m = 2 (quadratic) for 1 knots.

 

Keywords: Spline Multivariable, GCV, Inflation

Fulltext View|Download

Article Metrics:

Last update:

  1. Pendekatan Regresi Spline Multivariabel untuk Pemodelan Indeks Ketahanan Pangan Provinsi Sumatera Utara

    Zulaika Zulaika, Hendra Cipta, Machrani Adi Putri Siregar . Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika, 7 (1), 2024. doi: 10.30605/proximal.v7i2.3666

Last update: 2025-01-19 17:23:23

  1. Generalized Space Time Autoregressive of Chili Prices

    Jamilatuzzahro. Proceedings of 2018 International Conference on Information Management and Technology, ICIMTech 2018, 2018. doi: 10.1109/ICIMTech.2018.8528117
  2. The step construction of penalized spline in electrical power load data

    Caraka R.E.. Telkomnika (Telecommunication Computing Electronics and Control), 17 (2), 2019. doi: 10.12928/TELKOMNIKA.v17i2.8460
  3. Rainfall forecasting using PSPline and rice production with ocean-atmosphere interaction

    Caraka R.. IOP Conference Series: Earth and Environmental Science, 127 (1), 2018. doi: 10.1088/1755-1315/195/1/012064