skip to main content

PARAMETER INDEPENDENT FUZZY WEIGHTED k-NEAREST NEIGHBOR

*Mayawi Mayawi  -  Department of Mathematics, Universitas Gadjah Mada, Bulaksumur, Caturtunggal, Kec. Depok, Kabupaten Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
Subanar Subanar  -  Department of Mathematics, Universitas Gadjah Mada, Bulaksumur, Caturtunggal, Kec. Depok, Kabupaten Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
Open Access Copyright (c) 2024 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Parameter Independent Fuzzy Weighted k-Nearest Neighbor (PIFWkNN) as a classification technique developed by combining Success History based Parameter Adaptive Differential Evolution (SHADE) with Fuzzy k-Nearest Neighbor (FkNN), where this PIFWkNN does not state the optimization of weights and k values as two separate problems, but they’re combined into one and solved simultaneously by the SHADE algorithm. The steps for implementing the PIFWkNN method are explained, followed by its application to 10 different datasets, and then the accuracy is calculated. To see the consistency of the goodness of the classification of this method, the accuracy results are compared with the accuracy of the k-Nearest Neighbor (kNN), FkNN, and Weighted k-Nearest Neighbor (WkNN). The results show that the average accuracy of PIFWkNN, kNN, FkNN, and WkNN is 75.76%, 68.52%, 71.40% and 66.22% so PIFWkNN is higher than the three methods. Using the Wilcoxon Sign Rank (WSR) test also concluded that with a 95% confidence shows that every hypothesis had significant differences. Furthermore, it descriptively shows that the average rank of PIFWkNN is higher than the other. Thus, the PIFWkNN has higher accuracy than the kNN, FkNN, and WkNN.
Fulltext View|Download
Keywords: Classification; Parameter Independent Fuzzy Weighted k-Nearest Neighbor; k-Nearest Neighbor; Weighted k-Nearest Neighbor; Fuzzy k-Nearest Neighbor; Success History based Parameter Adaptive Differential Evolution

Article Metrics:

  1. Ahmad, I. & Saputra, H. S. D. H. (2018). Using Fuzzy K-Nearest Neighbor for Predicting University Students Graduation in Teknokrat. Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), 1(1), 47-52
  2. AlSukker, A., Khushaba, R., & Al-Ani, A. (2010, March). Optimizing the k-NN Metric Weights Using Differential Evolution. In 2010 International Conference on Multimedia Computing and Information Technology (MCIT) (pp. 89-92). IEEE
  3. Angreni, I. A., Adisasmita, S. A., Ramli, M. I., & Hamid, S. (2018). Pengaruh Nilai K Pada Metode K-Nearest Neighbor (KNN) Terhadap Tingkat Akurasi Identifikasi Kerusakan Jalan. Rekayasa Sipil Mercu Buana, 7(2), 63-70
  4. Biswas, N., Chakraborty, S., Mullick, S. S., & Das, S. (2018). A Parameter Independent Fuzzy Weighted K-Nearest Neighbor Classifier. Pattern Recognition Letters, 101, 80-87
  5. Chen, H. L., Liu, D. Y., Yang, B., Liu, J., Wang, G., & Wang, S. J. (2011). An Adaptive Fuzzy K-Nearest Neighbor Method Based on Parallel Particle Swarm Optimization for Bankruptcy Prediction. 2010 Pacific-Asia Conference on Knowledge Discovery and Data Mining, 249-264. Springer, Berlin, Heidelberg
  6. Gareth, J., Daniela, W., Trevor, H., & Robert, T. (2013). An Introduction to Statistical Learning: With Applications in R. New York: Springer
  7. Hechenbichler, K. & Schliep, K. (2004). Weighted k-Nearest-Neighbor Techniques and Ordinal Classification. Sonderforschungsbereich 386, Paper 399
  8. Jóźwik, A. (1983). A Learning Scheme for a Fuzzy k-NN Rule. Pattern Recognition Letters, 1(5-6), 287-289
  9. Keller, J. M., Gray, M. R., & Givens, J. A. (1985). A Fuzzy k-Nearest Neighbor Algorithm. IEEE Transactions on Systems, Man, and Cybernetics, 4, 580-585
  10. Kozak, K., Kozak, M., & Stapor, K. (2007). Weighted k-Nearest-Neighbor Techniques for High Throughput Screening Data. International Journal of Chemical and Molecular Engineering, 1(12), 161-166
  11. Prasetio, R. T. (2020). Seleksi Fitur dan Optimasi Parameter k-NN Berbasis Algoritma Genetika pada Dataset Medis. Jurnal Responsif: Riset Sains & Informatika, 2(2), 213-221
  12. Sianturi, T. O. (2018). Penerapan Algoritme Fuzzy K-Nearest Neighbor (FK-NN) pada Pengklasifikasian Penyakit Kejiwaan Skizofrenia (Doctoral dissertation, Universitas Brawijaya)
  13. Siringoringo, R., & Perangin-angin, R. (2017). Hibridisasi Metode Fuzzy K-Nearest Neighbor dengan Metode Modified Particle Swarm Optimization pada Pengklasifikasian Penyakit Tanaman Kedelai. Sinkron: Jurnal dan Penelitian Teknik Informatika, 2(2), 6-12
  14. Suguna, N. & Thanushkodi, K. (2010). An Improved k-Nearest Neighbor Classification Using Genetic Algorithm. International Journal of Computer Science Issues, 7(2), 18-21
  15. Tanabe, R. & Fukunaga, A. (2013, June). Success-History Based Parameter Adaptation for Differential Evolution. 2013 IEEE Congress on Evolutionary Computation, 71-78
  16. Ubaiddillah, M., Ratnawati, D. E., & Dewi, C. (2017). Deteksi Dini Penyakit Gagal Ginjal menggunakan Gabungan Genetic Algorithm dan Fuzzy K-Nearest Neighbor (GAFKNN). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(2), 577-583

Last update:

No citation recorded.

Last update: 2025-10-13 10:00:48

No citation recorded.