BibTex Citation Data :
@article{Medstat43905, author = {Febriyana Taki and Lailany Yahya and Muhammad Rezky Friesta Payu}, title = {APPLICATION OF BIPLOT ANALYSIS WITH ROBUST SINGULAR VALUE DECOMPOSITION TO POVERTY DATA IN SULAWESI ISLAND}, journal = {MEDIA STATISTIKA}, volume = {15}, number = {2}, year = {2023}, keywords = {Poverty; Biplot Analysis; Robust Singular Value Decomposition; Outlier}, abstract = { Poverty is defined as an inability of the individual to meet basic needs for a decent life. According to BPS data in 2020, Sulawesi Island ranks fifth as the poorest island in Indonesia. This study aims to find out the mapping of areas and indicators of poverty in Sulawesi Island using Biplot Analysis with Robust Singular Value Decomposition approach for outlier research data. Based on the results of the study, there are five objects that are outlier and the information provided by the biplot amounted 98.45%. District/city that have similar characteristics are divided into 4 groups. The indicator of poverty that has the most diversity is the School Old Expectations Numbers (Var 4) and the one with the least diversity is Poor Households Using Clean Water (Var 8). Indicators of poverty that are positively correlated are Literacy Numbers (Var 1) and Non-Working Poor Population (Var 5), while the negative correlated are The Non-Working Poor Population (Var 5) and Poor Households Using Clean Water (Var 8). There are 19 districts/cities that have literacy values above the average of all districts/cities and 11 districts/cities that have a per capita expenditure value below the average of all districts/cities. }, issn = {2477-0647}, pages = {220--230} doi = {10.14710/medstat.15.2.220-230}, url = {https://ejournal.undip.ac.id/index.php/media_statistika/article/view/43905} }
Refworks Citation Data :
Poverty is defined as an inability of the individual to meet basic needs for a decent life. According to BPS data in2020, Sulawesi Island ranks fifth as the poorest island in Indonesia. This study aims to find out the mapping of areas and indicators of poverty in Sulawesi Island using Biplot Analysis with Robust Singular Value Decomposition approach for outlier research data. Based on the results of the study, there are five objects that are outlier and the information provided by the biplot amounted 98.45%. District/city that have similar characteristics are divided into 4 groups. The indicator of poverty that has the most diversity is the School Old Expectations Numbers (Var 4) and the one with the least diversity is Poor Households Using Clean Water (Var 8). Indicators of poverty that are positively correlated are Literacy Numbers (Var 1) and Non-Working Poor Population (Var 5), while the negative correlated are The Non-Working Poor Population (Var 5) and Poor Households Using Clean Water (Var 8). There are 19 districts/cities that have literacy values above the average of all districts/cities and 11 districts/cities that have a per capita expenditure value below the average of all districts/cities.
Article Metrics:
Last update:
Last update: 2024-11-02 14:40:34
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief) Editorial Office of Media StatistikaDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: maruddani@live.undip.ac.id
Media Statistika
Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro
Gedung F Lantai 3, Jalan Prof Jacub Rais, Kampus Tembalang
Semarang 50275
Indexing: