skip to main content

COMPARATIVE EVALUATION OF ARIMA AND GRU MODELS IN PREDICTING RUPIAH DOLLAR EXCHANGE RATE

*Dwi Fitrianti  -  Department of Statistics and Data Sains, IPB University, Jl. Raya Dramaga, Babakan, Kec. Dramaga, Kabupaten Bogor, Jawa Barat, Indonesia 16680, Indonesia
Ratu Risha Ulfia  -  Department of Statistics and Data Sains, IPB University, Jl. Raya Dramaga, Babakan, Kec. Dramaga, Kabupaten Bogor, Jawa Barat, Indonesia 16680, Indonesia
Khairil Anwar Notodiputro  -  Department of Statistics and Data Sains, IPB University, Jl. Raya Dramaga, Babakan, Kec. Dramaga, Kabupaten Bogor, Jawa Barat, Indonesia 16680, Indonesia
Yenni Angraini  -  Department of Statistics and Data Sains, IPB University, Jl. Raya Dramaga, Babakan, Kec. Dramaga, Kabupaten Bogor, Jawa Barat, Indonesia 16680, Indonesia
Laily Nissa Atul Mualifah  -  Department of Statistics and Data Sains, IPB University, Jl. Raya Dramaga, Babakan, Kec. Dramaga, Kabupaten Bogor, Jawa Barat, Indonesia 16680, Indonesia
Open Access Copyright (c) 2025 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
This study evaluates the effectiveness of the ARIMA (Autoregressive Integrated Moving Average) and GRU (Gated Recurrent Unit) models in forecasting the USD–Rupiah exchange rate. Exchange rate fluctuations influence overall economic stability, making accurate forecasting crucial. Monthly data from January 2001 to March 2024 were analyzed. The ARIMA model, a traditional statistical approach, combines autoregressive (AR), differencing (I), and moving average (MA) components to capture linear patterns, while the GRU model, a deep learning approach, captures nonlinear and complex temporal relationships using update and reset gate mechanisms to retain long-term information. Model performance was evaluated using the Mean Absolute Percentage Error (MAPE). The GRU model achieved a MAPE of 1.74%, lower than the ARIMA model’s 1.94%, and generated a forecast of Rp. 16,399.91 for April 2024, closer to the actual value of Rp. 16,249.00 compared to ARIMA’s Rp. 15,857.68. The findings demonstrate the GRU model’s superior forecasting performance and provide empirical evidence of its effectiveness in modeling volatile exchange rate data, particularly the Rupiah–USD rate.
Fulltext View|Download
Keywords: ARIMA; GRU; Forecasting; Exchange rate

Article Metrics:

  1. Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting And Control. New York: John Wiley & Sons
  2. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. ArXiv Preprint ArXiv:1412.3555
  3. Gustiansyah, M. A., Rizki, A., Apriyanti, B., Maulidia, K., Roa, R. J. R., Al Hadi, O., Hidayatulloh, N. G. T., Ningsih, W. A. L., Ratnasari, A. P., & Angraini, Y. (2023). Aplikasi Model ARIMA dalam Peramalan Data Harga Emas Dunia Tahun 2010-2022. Jurnal Statistika Dan Aplikasinya, 7(1), 84–92
  4. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice. OTexts
  5. Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed.). OTexts
  6. Kontopoulou, V. I., Panagopoulos, A. D., Kakkos, I., & Matsopoulos, G. K. (2023). A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks. Future Internet, 15(8), 1–31. https://doi.org/10.3390/fi15080255
  7. Lim, B., & Zohren, S. (2021). Time-series forecasting with Deep Learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194). https://doi.org/10.1098/rsta.2020.0209
  8. Maharani, N. S., Angraini, Y., Rahmawan, M. A., Putri, O. A., Kurniawan, S., Safitri, T. A., Rizki, A., Ningsih, W. A. L., Hidayatulloh, N. G. T., & Ratnasari, A. P. (2023). Aplikasi Model ARIMA GARCH dalam Peramalan Data Nilai Tukar Rupiah Terhadap Dolar Tahun 2017-2022. Jurnal Matematika Sains Dan Teknologi, 24(1), 37–50
  9. Meilania, G. T., Septiani, A. V., Erianti, E., Notodiputro, K. A., & Angraini, Y. (2024). Pemodelan ARIMA-GARCH dalam Peramalan Kurs Rupiah Terhadap Yen dengan Masalah Keheterogenan Ragam. Ekonomis: Journal of Economics and Business, 8(1), 165–180
  10. Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to Time Series Analysis and Forecasting. New York: John Wiley & Sons
  11. Nurpiah, S. Budiarti, R., & Septyanto, F. (2022). Peramalan Nilai Tukar Rupiah Terhadap Dolar Amerika dengan Pendekatan Analisis Regresi dan ARIMA. Thesis. Bogor: IPB University
  12. Ridwan, M., Sadik, K., & Afendi, F. M. (2023). Comparison of ARIMA and GRU Models for High-Frequency Time Series Forecasting. Scientific Journal of Informatics, 10(3), 389–400
  13. Triyono, T. (2008). Analisis Perubahan Kurs Rupiah Terhadap Dollar Amerika. Jurnal Ekonomi Pembangunan, 9(2), 156–167
  14. Wu, L., Liu, S., & Yang, Y. (2016). Grey Double Exponential Smoothing Model and Its Application on Pig Price Forecasting China. Applied Soft Computing, 39, 117–123
  15. Wüthrich, M. V, & Merz, M. (2023). Statistical Foundations of Actuarial Learning and Its Applications. Swiss: Springer Nature
  16. Zhong, Z., Wu, D., & Mai, W. (2023). Stock Prediction Based on ARIMA Model and GRU Model. Academic Journal of Computing & Information Science, 6(7), 114–123. https://doi.org/10.25236/ajcis.2023.060715

Last update:

No citation recorded.

Last update: 2025-10-17 02:12:08

No citation recorded.