skip to main content

A COMPARISON OF MULTIPLICATIVE AND ADDITIVE HAZARD MODELS USING THE HAZARD AND SURVIVAL RATIO

*Danardono Danardono orcid scopus  -  Department of Mathematics, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
Gunardi Gunardi  -  Department of Mathematics, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
Open Access Copyright (c) 2024 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The Cox multiplicative hazards regression and Aalen additive hazards regression models are widely used for survival data analysis. While the Cox model emphasizes hazard ratios or relative risks, the Aalen model focuses on relative survival or excess risks. This study compares the performance of these models through simulations of biomedical survival data. Results reveal no clear dominance of one model over the other, suggesting that both models should be employed to have a more thorough survival analysis.

Fulltext View|Download
Keywords: Survival Analysis; the Cox Proportional Hazards; the Aalen Additive Hazards; Simulations

Article Metrics:

  1. Aalen, O. O., Borgan, Ø., & Gjessing, H. K. (2008). Survival and Event History Analysis. Springer
  2. Aalen, O. O., Cook, R. J., & Røysland, K. (2015). Does Cox Analysis of A Randomized Survival Study Yield A Causal Treatment Effect? Lifetime Data Analysis, 21(4), 579–593. https://doi.org/10.1007/s10985-015-9335-y
  3. Aalen, O. O., Stensrud, M. J., Didelez, V., Daniel, R., Røysland, K., & Strohmaier, S. (2020). Time-Dependent Mediators in Survival Analysis: Modeling Direct and Indirect Effects with the Additive Hazards Model. Biometrical Journal, 62(3), 532–549. https://doi.org/10.1002/bimj.201800263
  4. Başar, E. (2017). Aalen’s Additive, Cox Proportional Hazards and The Cox-Aalen Model: Application to Kidney Transplant Data. Sains Malaysiana, 46(3), 469–476. https://doi.org/10.17576/jsm-2017-4603-15
  5. Collett, D. (2023). Modelling Survival Data in Medical Research, Fourth Edition. In Modelling Survival Data in Medical Research, Fourth Edition. https://doi.org/10.1201/9781003282525
  6. Cook, R. J., & Lawless, J. F. (2014). Statistical Issues in Modeling Chronic Disease in Cohort Studies. Statistics in Biosciences, 6(1), 127–161. https://doi.org/10.1007/s12561-013-9087-8
  7. Emmerson, J., & Brown, J. M. (2021). Understanding Survival Analysis in Clinical Trials. In Clinical Oncology (Vol. 33, Issue 1, pp. 12–14). Elsevier Ltd. https://doi.org/10.1016/j.clon.2020.07.014
  8. Haberman, S., & Sibbett, T. A. (2024). History Of Actuarial Science: Life Tables and Survival Model: Part 1: VOLUME I. In History of Actuarial Science: Life Tables and Survival Model: Part 1: Volume I (Vol. 1). https://doi.org/10.4324/9781003547822
  9. Kalbfleisch, J. D., & Schaubel, D. E. (2023). Fifty Years of the Cox Model. Annual Review of Statistics and Its Application, 10, 1–23. https://doi.org/10.1146/annurev-statistics-033021-014043
  10. Kragh Andersen, P., Pohar Perme, M., van Houwelingen, H. C., Cook, R. J., Joly, P., Martinussen, T., Taylor, J. M. G., Abrahamowicz, M., & Therneau, T. M. (2021). Analysis of Time-to-event for Observational Studies: Guidance to The Use of Intensity Models. Statistics in Medicine, 40(1), 185–211. https://doi.org/10.1002/sim.8757
  11. Martinussen, T., & Peng, L. (2016). Alternatives to the Cox Model. In Handbook of Survival Analysis (pp. 49–75). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84979044549&partnerID=40&md5=653650a8bda44afed1f48eb7e6b725ec
  12. Martinussen, T., & Scheike, T. H. (2006). Dynamic Regression Models for Survival Data. Springer
  13. R Core Team. (2024). R: A Language and Environment for Statistical Computing. https://www.R-project.org/
  14. Therneau, T. M. (2024). A Package for Survival Analysis in R. https://CRAN.R-project.org/package=survival
  15. van Houwelingen, H. C., & Stijnen, T. (2016). Cox Regression Model. In Handbook of Survival Analysis (pp. 5–25). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029670046&partnerID=40&md5=6f3091acf4672657d99b317fd1f01193
  16. Wuryandari, T., & Kartiko, S. H. (2018). The Cox Proportional Hazard Model on Duration of Birth Process. Journal of Physics: Conference Series, 1025(1). https://doi.org/10.1088/1742-6596/1025/1/012121

Last update:

No citation recorded.

Last update: 2025-01-23 05:52:19

No citation recorded.