skip to main content

FORECASTING THE CLOSING PRICE OF META STOCKS USING A PULSE FUNCTION INTERVENTION ANALYSIS APPROACH

*M. Fariz Fadillah Mardianto scopus  -  Statistics Study Program, Universitas Airlangga, Surabaya, Indonesia, Indonesia
Nurin Faizun  -  Statistics Study Program, Universitas Airlangga, Surabaya, Indonesia, Indonesia
Muhammad Nauvaldy  -  Statistics Study Program, Universitas Airlangga, Surabaya, Indonesia, Indonesia
Sediono Sediono scopus  -  Statistics Study Program, Universitas Airlangga, Surabaya, Indonesia, Indonesia
Open Access Copyright (c) 2025 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Meta Platforms, Inc. (META), the holding company that owns Facebook, Instagram, and WhatsApp, plays a crucial role in advancing artificial intelligence (AI). In early 2024, CEO Mark Zuckerberg announced an ambitious initiative to develop Artificial General Intelligence (AGI), leading to a significant rise in Meta's stock during the first quarter. Consequently, an analysis using the pulse function intervention method was conducted to model and forecast future data. The study utilized weekly data consisting of 124 training and 7 testing observations, spanning from March 13, 2022, to September 15, 2024. The optimal intervention model determined is ARIMA (0,2,1), with parameters (0,0,1) and an intervention point at t = 99. Predictions for a further 8 periods resulted a MAPE of 9.682003% and an MSE of 2411.771. These findings suggest that investors should consider the influence of Zuckerberg's AGI strategy announcement on stock performance. The post-announcement surge indicates a favorable market reaction, and investors should closely follow the AGI project's development to assess META's long-term potential in the technology sector.
Fulltext View|Download
Keywords: Meta Stock Price; Time Series; Intervention Analysis; Pulse Function;

Article Metrics:

  1. Ahmar, A. S. (2023). Forecast Error Calculation with Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). JINAV: Journal of Information and Visualization, 1(2), 94–96. https://doi.org/10.35877/454RI.jinav303
  2. Badulescu, Y., Hameri, A. P., & Cheikhrouhou, N. (2021). Evaluating Demand Forecasting Models Using Multi-Criteria Decision-Making Approach. Journal of Advances in Management Research, 18(5), 661–683
  3. Cryer, J. D. & Chan, K. S. (2008). Time Series Analysis: with Applications in R. New York: Springer
  4. Duchesne, P. (2020). The ARIMA Procedure. Retrieved from University of Montreal. https://dms.umontreal.ca/~duchesne/chap7.pdf
  5. International Telecommunication Union. (2021). Internet Use. ITU-D. https://www.itu.int/itu-d/reports/statistics/2021/11/15/internet-use/
  6. Investing. (2024). Meta Platforms Inc (META) Historical Data. https://id.investing.com/equities/facebook-inc-historical-data
  7. Lafifah, C. N., & Murwanti, S. (2024). Analisis Perbandingan Kinerja Keuangan Sebelum dan Sesudah Akuisisi pada Meta Platforms, Inc. YUME: Journal of Management, 7(3), 521–535
  8. Mills, T. C. (2019). Applied Time Series Analysis: A Practical Guide to Modeling and Forecasting. Academic Press
  9. Morningstar. (2024). Going Into Earnings: Is Meta a Buy, Sell, or Fairly Valued? Morningstar. https://www.morningstar.com/stocks/going-into-earnings-is-meta-buy-sell-or-fairly-valued
  10. Murari, A., Peluso, E., Cianfrani, F., Gaudio, P., & Lungaroni, M. (2019). On the Use of Entropy to Improve Model Selection Criteria. Entropy, 21(4), 394. https://doi.org/10.3390/e21040394
  11. Ojo, J. F., & Olanrewaju, R. O. (2021). Review of Family of Autoregressive Integrated Moving Average Models in the Comportment of Autocorrelation Function for Non-Seasonal Time Series Data. International Journal of Mathematical Sciences & Applications, 19(1), 79–89
  12. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., & Chintala, S. (2019). Pytorch: An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information Processing Systems, 32
  13. Purwa, T., Nafngiyana, U., & Suhartono, S. (2020). Comparison of ARIMA, Transfer Function and VAR Models for Forecasting CPI, Stock Prices, and Indonesian Exchange Rate: Accuracy vs. Explainability. Media Statistika, 13(1), 1–12. https://doi.org/10.14710/medstat.13.1.1-12
  14. PwC. (2018). The Macroeconomic Impact of Artificial Intelligence: Technical report. https://www.pwc.co.uk/economic-services/assets/macroeconomic-impact-of-ai-technical-report-feb-18.pdf
  15. Ryan, O., Haslbeck, J., & Waldorp, L. (2023). Non-Stationarity in Time-Series Analysis: Modeling Stochastic and Deterministic Trends. Multivariate Behavioral Research, 60(3), 556-588
  16. Sarnato, A. Z., Sari, W. D., Rahmawati, S. T., Hidayat, R., & Patry, H. (2024). The Evolution of E-Learning Platforms: From U-Learning to AI-Driven Adaptive Learning Systems. Journal of Social Science Utilizing Technology, 2(2), 289–300
  17. Tektelic Blog. (2023). IoT and AI Solutions. https://tektelic.com/expertise/ai-and-iot/
  18. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., & Lample, G. (2023). LLaMA: Open and Efficient Foundation Language Models. arXiv preprint. https://arxiv.org/pdf/2302.13971
  19. Wei, W. W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods. 2nd Edition. New York: Addison Wesley
  20. World Economic Forum. (2020). The Future of Jobs Report 2020
  21. Yu, H., Shen, Z., Miao, C., Leung, C., Lesser, V. R., & Yang, Q. (2018). Building Ethics Into Artificial Intelligence. arXiv preprint

Last update:

No citation recorded.

Last update: 2025-10-16 20:52:10

No citation recorded.