BibTex Citation Data :
@article{Medstat7642, author = {Irlandia Ginanjar and Anindya Pravitasari and Aleknaek Martuah}, title = {ANALISIS OBYEK DAN KARAKTERISTIK DARI MATRIKS INDIKATOR MENGGUNAKAN HYBRID ANALISIS KELAS LATEN DENGAN BIPLOT ANALISIS KOMPONEN UTAMA (BIPLOT AKU)}, journal = {MEDIA STATISTIKA}, volume = {6}, number = {2}, year = {2013}, keywords = {}, abstract = { Analysis of the object and the characteristics will be much easier, efficient, and informative when based on a perceptual map, which can display objects and characteristics. Indicator matrix is a matrix where the rows represent objects and the columns is a dummy variable representing characteristics. This article writes about techniques to make perceptual map from indicator matrix, where that can provide information about the similarity between objects, the diversity of each characteristic, correlations between the characteristics, and characteristic values for each object, the techniques we call Hybrid Latent Class Cluster with PCA Biplot, where Latent Class Cluster Analysis is used to transform the indicator matrix to cross section matrix, where rows represent the objects and columns represent the characteristics, the observation cells is the probability of characteristic for each object, next the cross section matrix mapped using Principal Component Analysis Biplot (PCA Biplot). Key Words : Hybrid Latent Class Cluster with PCA Biplot, Latent Class Cluster Analysis, Biplot Principal Component Analysis, Indicator Matrix. }, issn = {2477-0647}, pages = {81--90} doi = {10.14710/medstat.6.2.81-90}, url = {https://ejournal.undip.ac.id/index.php/media_statistika/article/view/7642} }
Refworks Citation Data :
Analysis of the object and the characteristics will be much easier, efficient, and informative when based on a perceptual map, which can display objects and characteristics. Indicator matrix is a matrix where the rows represent objects and the columns is a dummy variable representing characteristics. This article writes about techniques to make perceptual map from indicator matrix, where that can provide information about the similarity between objects, the diversity of each characteristic, correlations between the characteristics, and characteristic values for each object, the techniques we call Hybrid Latent Class Cluster with PCA Biplot, where Latent Class Cluster Analysis is used to transform the indicator matrix to cross section matrix, where rows represent the objects and columns represent the characteristics, the observation cells is the probability of characteristic for each object, next the cross section matrix mapped using Principal Component Analysis Biplot (PCA Biplot).
Key Words: Hybrid Latent Class Cluster with PCA Biplot, Latent Class Cluster Analysis, Biplot Principal Component Analysis, Indicator Matrix.
Article Metrics:
Last update:
Last update: 2024-09-14 18:13:07
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief) Editorial Office of Media StatistikaDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: maruddani@live.undip.ac.id
Media Statistika
Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro
Gedung F Lantai 3, Jalan Prof Jacub Rais, Kampus Tembalang
Semarang 50275
Indexing: