skip to main content

FORECAST EVALUATION OF ARIMA AND ANFIS FOR INDONESIA'S MONTHLY EXPORT (2009-2024)

*Tri Wijayanti Septiarini orcid scopus  -  Mathematics Study Program, Faculty of Science and Technology, Universitas Terbuka, Indonesia, Indonesia
Azidni Rofiqo  -  Department of Islamic Economics, Faculty of Economics and Business, Universitas Negeri Surabaya, Indonesia
Eka Pariyanti  -  Department of Doctor in Management, Graduate School, Universitas Terbuka, Indonesia
Sahidan Abdulmana  -  Department of Data Science and Analytics, Faculty of Science and Technology, Fatoni University, Thailand
Open Access Copyright (c) 2025 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Indonesia’s export sector is a key driver of economic growth, contributing significantly to foreign exchange, employment, and industrial development. Accurate forecasting of export trends is crucial for policymakers, economists, and businesses in shaping strategies and reducing risks. This study applies the Autoregressive Integrated Moving Average (ARIMA) model to forecast Indonesia’s monthly export values from January 2014 to August 2024. Dataset has been divided into training (75%) and testing (25%) subsets, and the Box-Jenkins methodology was employed, including stationarity testing, identification via ACF and PACF plots, parameter estimation, and residual diagnostics. The optimal ARIMA(1,1,1) model achieved strong predictive performance in RMSE, MSE, and MAPE. To benchmark classical methods against modern approaches, ARIMA was compared with the Adaptive Neuro-Fuzzy Inference System (ANFIS). Results indicated that ARIMA delivered higher accuracy for this dataset, reaffirming the robustness of traditional models when data characteristics align with their assumptions. It has conducted prior research evaluation via 75%:25% holdout and rolling-actual back test. This research demonstrates that classical time-series models remain highly relevant in the era of artificial intelligence, emphasizing the importance of appropriate model selection in economic forecasting.
Fulltext View|Download
Keywords: Export; Forecasting; Indonesia; Time Series

Article Metrics:

  1. Ahmar, A. S., Botto-Tobar, M., Rahman, A., & Hidayat, R. (2022). Forecasting the Value of Oil and Gas Exports in Indonesia using ARIMA Box-Jenkins. JINAV: Journal of Information and Visualization, 3(1), 35–42. https://doi.org/10.35877/454ri.jinav260
  2. Aisyah, S., & Renggani, T. D. (2021). Determinants of Indonesia Non-Oil and Gas Exports To Non-Traditional Market. Business and Accounting Research (IJEBAR) Peer Reviewed-International Journal, 5(3), 1136–1142
  3. Apriliyanti, R., Satyahadewi, N., & Andani, W. (2023). Application of Extreme Learning Machine Method on Stock Closing Price Forecasting PT Aneka Tambang (Persero) Tbk. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 17(2), 1057–1068
  4. Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. New York: John Wiley & Sons
  5. Bustami, Yolanda, A. M., & Thahira, N. (2023). Forecasting Non-Oil and Gas Exports in Indonesia Using Double and Triple Exponential Smoothing Methods. International Journal of Industrial Engineering and Engineering Management, 5(1), 45–49. https://doi.org/10.24002/ijieem.v5i1.6211
  6. Calanca, P. (2014). Weather Forecasting Applications in Agriculture. Encyclopedia of Agriculture and Food Systems, 437–449. https://doi.org/10.1016/B978-0-444-52512-3.00234-5 TY - CHAP
  7. Chicco, D., Warrens, M. J., & Jurman, G. (2021). The Coefficient of Determination R-Squared is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/PEERJ-CS.623
  8. Chodakowska, E., Nazarko, J., & Nazarko, Ł. (2021). ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise. Energies, 14(23), 7952. https://doi.org/10.3390/en14237952
  9. Daniels, P. W. (2000). Export of Services of Servicing Exports? Geografiska Annaler: Series B, Human Geography, 82(1), 1–15. https://doi.org/10.1111/j.0435-3684.2000.00069.x
  10. Dave, E., Leonardo, A., Jeanice, M., & Hanafiah, N. (2021). Forecasting Indonesia Exports using a Hybrid Model ARIMA-LSTM. Procedia Computer Science, 179(1), 480–487. https://doi.org/10.1016/j.procs.2021.01.031
  11. Eliwa, E., Koshiry, A. M. El, El‐Hafeez, T. A., & Omar, A. M. (2024). Optimal Gasoline Price Predictions: Leveraging the ANFIS Regression Model. International Journal of Intelligent Systems. 2024, 20. https://doi.org/10.1155/2024/8462056
  12. Hasmarini, M. I. & Murtiningsih, D. (2017). Analisis Kausalitas Ekspor Non Migas Dengan Pertumbuhan Ekonomi Menggunakan Metode Final Prediction Error. Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi Dan Pembangunan, 4(2), 147–161
  13. Jabeen, S., Baig, M., & Awais, M. M. (2023). ANFIS Learning Using Expectation Maximization Based Gaussian Mixture Model and Multilayer Perceptron Learning. Applied Soft Computing, 149, 110958. https://doi.org/10.1016/j.asoc.2023.110958
  14. Junita, T. P., & Kartikasari, M. D. (2024). Application of the Neural Network Autoregressive (NNAR) Method for Forecasting the Value of Oil and Gas Exports in Indonesia. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 18(1). https://doi.org/10.30598/barekengvol18iss1pp0341-0348
  15. Karl, M., Kock, F., Ritchie, B. W., & Gauss, J. (2021). Affective Forecasting and Travel Decision-making: An Investigation in Times of a Pandemic. Annals of Tourism Research, 87. https://doi.org/10.1016/j.annals.2021.103139
  16. Kashpruk, N., Piskor-Ignatowicz, C., & Baranowski, J. (2023). Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements. Applied Sciences (Switzerland), 13(22), 12374. https://doi.org/10.3390/app132212374
  17. Kaur, J., Parmar, K. S., & Singh, S. (2023). Autoregressive Models in Environmental Forecasting Time Series: A Theoretical and Application Review. Environmental Science and Pollution Research, 30(8), 19617–19641. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11356-023-25148-9
  18. Ledolter, J. (1979). Inference Robustness of ARIMA Models Under Non-Normality -Special Application to Stock Price Data. Metrika, 26(1). https://doi.org/10.1007/BF01893469
  19. Lemoine, D., & Kapnick, S. (2024). Financial Markets Value Skillful Forecasts of Seasonal Climate. Nature Communications, 15. https://doi.org/10.1038/s41467-024-48420-z
  20. Lim, B., & Zohren, S. (2021). Time-series Forecasting with Deep Learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194). https://doi.org/10.1098/rsta.2020.0209
  21. Munandar, D., Ruchjana, B. N., & Abdullah, A. S. (2022). Principal Component Analysis-Vector Autoregressive Integrated (PCA-VARI) Model Using Data Mining Approach to Climate Data in the West Java Region. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 16(1), 99–112
  22. Ngatikoh, S. (2020). Pengaruh Ekspor Impor bagi Pertumbuhan Ekonomi dalam Perspektif Islam. LABATILA: Jurnal Ilmu Ekonomi Islam, 4(01), 90–103
  23. Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., Ziel, F. (2022). Forecasting: Theory and Practice. International Journal of Forecasting, 38(3), 705–871. Elsevier B.V. https://doi.org/10.1016/j.ijforecast.2021.11.001
  24. Pratiwi, H., Imro’ah, N., Huda, N. M., & Ayyash, M. Y. (2025). Comparison of Weight Matrix in Hotspot Modeling in West Kalimantan using the GSTAR Method. Jurnal Matematika UNAND, 14(1), 31–45. https://doi.org/10.25077/jmua.14.1.31-45.2025
  25. Putri, A. D., Fitria, Amalita, N., & Zilrahmi. (2023). Implementation of Backpropagation Artificial Neural Network on Forecasting Export of Palm Oil in Indonesia. UNP Journal of Statistics and Data Science, 1(5), 473–479. https://doi.org/10.24036/ujsds/vol1-iss5/123
  26. Qiao, L., Yang, P., Leng, Q., Xu, L., Bi, Y., Xu, J., Liu, J., Yin, W., Zhang, L., Wang, F., Yuan, Y., Chen, T., & Ding, C. (2023). Exploring ANFIS Application Based on Actual Data from Wastewater Treatment Plant for Predicting Effluent Removal Quality of Selected Major Pollutants. Journal of Water Process Engineering, 56(December), 104247. https://doi.org/10.1016/j.jwpe.2023.104247
  27. Rachmawati, R. R., & Gunawan, E. (2020). Peranan Petani Milenial mendukung Ekspor Hasil Pertanian di Indonesia. Forum Penelitian Agro Ekonomi, 38(1), 67–87. https://doi.org/10.21082/fae.v38n1.2020.67-87
  28. Rahmaningrum, E. N., Wahyuni, N., Fitri, N., Wulandari, R., Saniyah, Adnan, A., & Yendra, R. (2021). Forecasting for Exports and Imports in Indonesia. International Journal of Innovative Science and Research Technology, 6(12), 617–621
  29. Rhanoui, M., Yousfi, S., Mikram, M., & Merizak, H. (2019). Forecasting Financial Budget Time Series: ARIMA Random Walk vs LSTM Neural Network. IAES International Journal of Artificial Intelligence, 8(4), 317–327. https://doi.org/10.11591/ijai.v8.i4.pp317-327
  30. Salimi-Badr, A. (2024). UNFIS: A Novel Neuro-Fuzzy Inference System with Unstructured Fuzzy Rules. Neurocomputing, 579, 127437. https://doi.org/10.1016/j.neucom.2024.127437
  31. Samanta, S., Pratama, M., & Sundaram, S. (2021). Bayesian Neuro-Fuzzy Inference System for Temporal Dependence Estimation. IEEE Transactions on Fuzzy Systems, 29(9), 2479–2490. https://doi.org/10.1109/TFUZZ.2020.3001667
  32. Septiarini, T. W., & Musikasuwan, S. (2018a). Adaptive Neuro Fuzzy Inference System (ANFIS) for Predicting the Hourly Temperature in Pattani, Thailand. International Conference on Applied Statistics (ICAS), 2018, 24–26
  33. Septiarini, T. W., & Musikasuwan, S. (2018b). Investigating the Performance of ANFIS Model to Predict the Hourly Temperature in Pattani, Thailand. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012085
  34. Septiarini, T. W., Taufik, M. R., Afif, M., & Rukminastiti Masyrifah, A. (2020). A Comparative Study for Bitcoin Cryptocurrency Forecasting in Period 2017-2019. Journal of Physics: Conference Series, 1511(1). https://doi.org/10.1088/1742-6596/1511/1/012056
  35. Septiarini, T. W., Taufik, M. R., & Prasetya, T. A. E. (2021). A Comparative Forecasting Model of COVID-19 Case in Indonesia. Journal of Physics: Conference Series, 1918(4). https://doi.org/10.1088/1742-6596/1918/4/042020
  36. Sinaga, A. B., Sari, R. P., & Nurviana, N. (2023). Forecasting The Amount Of Oil and Non-Oil and Gas Exports In Indonesia Using The Box-Jenkins Method. Mathline: Jurnal Matematika Dan Pendidikan Matematika, 8(4), 1573–1588. https://doi.org/10.31943/mathline.v8i4.403
  37. Sri, B. A., Huang, W.-C., & Asmara, R. (2019). Forecasting of Indonesia Seaweed Export: A Comparison of Fuzzy Time Series with and without Markov Chain. Agricultural Social Economic Journal, 19(3), 155–164. https://doi.org/10.21776/ub.agrise.2019.019.3.4
  38. Sultan, Rahayu, H. C., & Purwiyanta. (2023). Analisis Pengaruh Kesejahteraan Masyarakat Terhadap Pertumbuhan Ekonomi di Indonesia. Jurnal Informatika Ekonomi Bisnis, 5, 75–83. https://doi.org/10.37034/infeb.v5i1.198
  39. Tabbussum, R., & Dar, A. Q. (2021). Performance Evaluation of Artificial Intelligence Paradigms—Artificial Neural Networks, Fuzzy Logic, and Adaptive Neuro-Fuzzy Inference System for Flood Prediction. Environmental Science and Pollution Research, 28(20), 25265–25282. https://doi.org/10.1007/S11356-021-12410-1
  40. Tarno, Rusgiyono, A., & Sugito. (2019). Adaptive Neuro Fuzzy Inference System (ANFIS) Approach for Modeling Paddy Production Data in Central Java. Journal of Physics: Conference Series, 1217(1). https://doi.org/10.1088/1742-6596/1217/1/012083
  41. Tarno, T., Rusgiyono, A., Warsito, B., Sudarno, S., & Ispriyanti, D. (2018). Pemodelan Hybrid ARIMA-ANFIS untuk Data Produksi Tanaman Hortikultura di Jawa Tengah. Media Statistika, 11(1), 65–78. https://doi.org/10.14710/medstat.11.1.65-78
  42. Zhang, G. P. (2003). Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing, 50, 159–175

Last update:

No citation recorded.

Last update: 2025-10-20 05:10:04

No citation recorded.